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With the growth in size and complexity of data, methods exploiting

low-dimensional structure, as well as distributed methods, have been playing

an ever important role in machine learning. These approaches offer a natural

choice to alleviate the computational burden, albeit typically at a statistical

trade-off. In this thesis, we show that a careful utilization of structure of a

problem, or bottlenecks of a distributed system, can also provide a statistical

advantage in such settings. We do this from the purview of the following three

problems:

• Learning Graphical models with a few hubs: Graphical models

are a popular tool to represent multivariate distributions. The task of

learning a graphical model entails estimating the graph of conditional

dependencies between variables. Existing approaches to learn graphical

models require a number of samples polynomial in the maximum degree

of the true graph, which can be large even if there are a few high-degree
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nodes. In this part of the thesis, we propose an estimator that detects

and then ignores high degree nodes. Consequently, we show that such

an estimator has a lower sample complexity requirement for learning the

overall graph when the true graph has a few high-degree nodes or “hubs”

for e.g. scale-free graphs.

• Kernel Ridge Regression via partitioning: Kernel methods find

wide and varied applicability in machine learning. However, solving the

Kernel Ridge Regression (KRR) optimization requires computation that

is cubic in the number of samples. In this work, we consider a divide-and-

conquer approach to solve the KRR problem. The division step involves

splitting the samples based on a partitioning of the input space, and the

conquering step is to simply use the local KRR estimate in each partition.

We show that this can not only lower the computational requirements of

solving the KRR problem, but also lead to improved accuracy over both a

single KRR estimate, and estimates based on random data partitioning.

• Stragglers in Distributed Synchronous Gradient Descent: Syn-

chronous methods in machine learning have many desirable properties,

but they are only as fast as the slowest machine in a distributed sys-

tem. The straggler/slow machine problem is a critical bottleneck for

such methods. In this part of our work, we propose a novel frame-

work based on Coding Theory for mitigating stragglers in Distributed

Synchronous Gradient Descent (and its variants). Our approach views
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stragglers as errors/erasures. By carefully replicating data blocks and

coding across gradients, we show how this can provide tolerance to fail-

ures and stragglers without incurring any communication overheads.
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Chapter 1

Introduction

In the current big data era, data sets have been growing at a humongous

rate, both in terms of the number of samples, n, as well as the dimensional-

ity of each sample, p. This rapid growth has prompted a renewed interest in

machine learning approaches that exploit a low-dimensional structure in the

problem, as well as distributed algorithms for machine learning. While the

ambient dimension of a problem may be high, having low-dimensional struc-

ture, such as sparsity, low-rank etc., makes the problem amenable to efficient

estimators. Alternatively, distributed versions of machine learning algorithms

can help alleviate the computational burden for an estimator. Both these

paradigms are accompanied with their own set of assumptions, sample com-

plexity requirements, statistical guarantees and bottlenecks — and using these

as black-boxes for many real-world settings may not be the best thing to do.

In this thesis, we study three problems of interest in machine learning

— Learning Graphical models, Kernel Ridge Regression and Distributed Syn-

chronous Gradient Descent. We show that further consideration for structure

or bottlenecks in these problems, whilst in a distributed setting, can lead to an

improvement in statistical performance over several estimators. Specifically,

1



we consider the following problems:

• Learning graphical models with a few hubs: A graphical model is

a useful tool for representing multivariate distributions. It comprises of

a Markov Graph which represents various conditional dependencies in a

distribution as edges in a graph. The task of learning a graphical model

entails estimating this Markov graph, given samples from the underlying

distribution. A common approach to do this is based on estimating the

neighborhood of each node and then combine them to obtain a global

estimate. Learning the neighborhood of any node typically requires a

number of samples polynomial in the degree of the node. This can be

a problem if there are some high-degree nodes in the true underlying

graph, since estimating them may require way more samples than what

we have. To avoid this, we propose an estimator which uses fewer sam-

ples by detecting and then ignoring high degree nodes. Thus, we only

require learning the neighborhoods of low degree nodes. We do this for

the problem of learning Ising models (a subclass of graphical models).

Consequently, we show that such an estimator has a lower sample com-

plexity requirement for learning the overall graph when the true graph

has a few high-degree nodes or ”hubs” for e.g. scale-free graphs.

• Kernel Ridge Regression (KRR): Kernel methods are widely used in

machine learning, since they provide a simple mechanism to extend many

linear models to more complex functions. By using the Kernel trick and

2



the Representer theorem, they allow learning linear models implicitly

in a space of higher-dimension (potentially infinite) while still keeping

the optimization tractable. They suffer, however, from high computa-

tional requirements: typically polynomial in the number of samples. For

example, solving a single KRR optimization has a computational com-

plexity that is cubic in the number of samples. A simple and commonly

used distributed strategy to reduce the computational cost is to ran-

domly split the data into disjoint groups, learn a KRR estimate for each

group, and then return the average of all estimates. By controlling the

number of groups, one can tradeoff the overhead of learning multiple

KRR estimates with the gain in computation of any of the individual

KRR estimates. Note that the latter is lesser as groups increase since

each group has fewer samples. In our work, we consider an alternate

divide-and-conquer approach to solve the KRR problem. The division

step involves splitting the samples based on a partitioning of the input

space (obtained via clustering, or otherwise), and the conquering step is

to simply use the local KRR estimate of a partition (i.e. a KRR esti-

mate using points only in the partition) as its global estimate. We show

that this can not only lower the computational requirements of solving

the KRR problem, but also lead to a statistical improvement over both

a single KRR estimator and estimators based on random data splitting

alluded to above.

• Stragglers in Distributed Synchronous Gradient Descent: Syn-

3



chronous methods in distributed machine learning have many desirable

properties such as stability and faster convergence. A major drawback

however is that they are only as fast as the slowest machine in a dis-

tributed system. In this work, we propose a novel approach to tackling

this problem. We leverage ideas from coding theory to mitigate strag-

glers in Distributed Synchronous Gradient Descent. Typically, coding

theory is used for reliable communication across a channel susceptible

to errors/erasures. By carefully encoding the intended message as a

larger message, one can guarantee recovery of the original message up

to a certain number of errors. Our key idea is to view stragglers as

errors/erasures from a coding theoretic perspective. For our setting,

we show that by carefully replicating data blocks and coding across the

gradients (in in Distributed Synchronous Gradient Descent), one can ob-

tain tolerance to failures and stragglers at no communication overhead,

although with a computational one.

The rest of this document is organized as follows. Chapter 2 discusses

the problem of Learning Graphs with a few hubs. Chapter 3 relates to the

problem of Kernel Ridge Regression. Chapter 4 considers the problem of

stragglers in Distributed Synchronous Gradient Descent. Finally, Chapter 5

concludes with a short summary.

4



Chapter 2

Learning Graphs with a Few Hubs1

2.1 Introduction

Graphical Models are a popular class of multivariate probability dis-

tributions that are widely used in applications across science and engineering.

The key idea here is to represent probability distributions compactly as a

product of functions over the cliques of an underlying graph. The task of

graphical model selection is to learn the underlying undirected graph given

samples drawn from the distribution it represents. This task becomes particu-

larly difficult in high-dimensional data settings, where the number of variables

p could be larger than the number of samples n.

Due in part to its importance, many practical algorithms with strong

statistical guarantees have been proposed for this graphical model selection

problem. In this chapter, we focus on binary Ising models, i.e. where the

variables are binary. For such Ising graphical models, [49] show that “local”

node-wise `1-regularized logistic regressions can recover the underlying graph

exactly with high probability, when given n = O(d3 log(p)) i.i.d. samples,

1This chapter is based on [60]. The author of this work was the first author and primary
contibutor to [60].
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where p is the number of nodes, and d is the maximum node-degree of the

graph. Another class of methods are based on local search and thresholding [1,

3, 9, 13], but in the absence of other stringent assumptions, their computational

complexity scales exponentially with the local node-degrees d. Among more

“global” approaches, [13, 30, 43] and others have proposed penalized pseudo-

likelihood [7] based approaches; while [61] have proposed penalized estimators

based on variational approximations to the graphical model log-likelihood;

however the sample complexity of these methods also scale polynomially with

the maximum node-degree of the graph.

Here, we consider the setting where the graphs have a few hub nodes,

which are highly connected nodes whose degree could scale as large as linearly

in the number of nodes. An importance instance of this are power-law graphs,

which occur ubiquitously in many real-world settings, and in which hub-nodes

with large degrees are few in number but not non-existent, and their maximum

node degree could be very large. Since the sample complexity of the state of the

art methods listed above scale polynomially with the maximum node-degree,

they would thus not be very suitable in recovering such power-law graphs with

hub nodes. Motivated by this, there have been a few statistical estimators

proposed that explicitly target power-law graphical model estimation. [38]

propose a novel non-convex regularization motivated by the power-law degree

distribution, a convex variant of which was also considered in [19]. While

these methods did not provide theoretical guarantees, even their experimen-

tal results demonstrated limited improvements in sample complexity over `1

6



regularization based methods. [43] propose a pseudo-likelihood based proce-

dure for learning discrete graphical models that minimizes the sum of weighted

node-wise conditional log-likelihoods, where the node-wise weights could po-

tentially be tuned to encourage power-law structure, but this was suggested

as a heuristic. For the specific case of Gaussian graphical models, [26] provide

an approach based on thresholding sample partial correlation matrices, and

provide asymptotic expressions for false discovery rates under stringent weak

dependence assumptions.

Consider the following leading question: what if we do not have enough

samples to solve for the node-conditional distribution of a hub-node in an Ising

model i.e. what if we we have less than d3
h log p samples, where dh is the de-

gree of the hub node? The estimators above that focus on the estimation of

a hub-networked graphical model all focus in part on the estimation of such

“difficult” sub-problems; so that they have a large sample complexity for esti-

mating such hub-networked graphical models [58]. Instead, we propose to turn

the problem on its head, and use our inability to estimate such difficult sub-

problems given limited samples, to then turn around and be able to estimate

the hub-network. To provide intuition for our strategy, consider a star-shaped

graph, with one hub node, and the rest being spoke nodes connected only to

the hub. The maximum degree of the hub node is thus p− 1, so that estimat-

ing the node-conditional distribution of the hub-node would require samples

scaling as p3 log p. What if only have samples scaling as log p? But suppose

we are also able to realize that we are unable to estimate the node-conditional

7



distribution of the hub-node; and only those of the spoke nodes. We can

then ignore the neighborhood estimation of the hub-node, and use the reliable

neighborhood estimates of just the spoke nodes: this suffices to estimate the

star-graph.

In this work, we formalize this strategy: we provide a quantitative cri-

terion for checking whether or not the given number of samples suffice for

regularized node-conditional distribution estimation as in [49] at a given node.

We then use this to detect “hub nodes,” and use only the neighborhood es-

timates from the remaining nodes to construct the graph estimate. We note

that our notion of “hub nodes” is specifically related to the difficulty of node-

neighborhood estimation, which only roughly corresponds to the node-degree

(while the required sample size scales as O(d3 log p), the constants matter in

finite sample settings).

Our criterion is based on the following key observations on `1 regular-

ized node-neighborhood estimation for any node u ∈ V conditioned on the

rest of the nodes. Consider the variance of the Bernoulli event of the incidence

of any node v ∈ V \u in the node-neighborhood estimate, as a function the

regularization penalty. When the penalty is very small, the node-neigborhood

estimate will include all nodes, and the variance will be zero; when the penalty

is “just right,” the node-neighborhood estimate will be correct and will include

v iff it is a neighbor with very high probability, so that the variance will again

be (close to) zero, and when the penalty is very large, the node-neighborhood

estimate will be null, and the variance will again be zero. Contrast this behav-

8



ior with the setting where there are very few samples to allow for neighborhood

recovery at any value of the regularization penalty: then the variance starts off

at zero, rises, and then slowly goes to zero as the node-neighborhood becomes

null. The difference in the observable behaviors between these two settings

thus allows us to differentiate “hub” nodes from non-hubs. As we show, we are

able to provide concrete statistical guarantees for our procedure, demonstrat-

ing improved sample complexity over the vanilla `1 regularized node-regression

procedure.

We note that the approach of [39] is similar in spirit to ours, utilizing a

weighted combination of the node wise estimates to obtain the overall estimate,

where the weights are the inverse of an alternate notion of variance. However,

their approach deals with parameter estimation in the asymptotic sense, and

is not applicable to structure estimation in the high dimensional setting.

Overall, we make a key advance in the estimation of hub-networked

graphical models: we provide a tractable procedure with strong statistical

guarantees even under very low-sample settings where we cannot even esti-

mate the node-conditional distributions of the hub nodes. Our methods in-

volve binary reliability indicators for node-conditional distribution estimation,

which could have broader applications in many scientific and engineering ap-

plications, even outside the context of graphical model estimation. Finally, all

proofs related to the results in this Chapter can be found in Appendix A.

9



2.2 Notation and Preliminaries

Let X = (X1, . . . , Xp) be a random vector, with each variable Xi (i ∈

[p]) taking values from a discrete set X. Let G = (V,E) be an undirected

graph over p nodes, corresponding to the p variables {X1, . . . , Xp}. A pair-

wise Markov random field over X = (X1, . . . , Xp) is a probability distribution

specified by non-negative pairwise functions φrt : X × X → R for each edge

(r, t) ∈ E:

P(x) ∝
∏
rt∈E

φrt(xr, xt) (2.1)

Note that we use rt as a shorthand for the edge (r, t). In this work, we focus on

the Ising model setting i.e. where we have binary variables with X = {−1, 1},

and where φrt = exp (θrtxrxt) for a given set of parameters θ = {θrt | rt ∈ E}.

In this case, (2.1) can be rewritten as :

Pθ(x) =
1

Z(θ)
exp

{∑
rt∈E

θrtxrxt

}
, (2.2)

where Z(θ) =
∑

x∈{−1,1}p
exp

{∑
rt∈E θrtxrxt

}
.

Let D := {x(1) . . . , x(n)} be n samples drawn i.i.d from the Ising model

distribution Pθ∗ with parameters θ∗ ∈ R(p2) and Markov graph G∗ = (V,E∗),

|V | = p. Note that each sample x(i) is a p-dimensional binary vector x(i) ∈

{−1, 1}p. The edge set E∗ is related to the parameters θ∗ as E∗ = {(r, t) ∈ V × V | θ∗rt 6= 0}.

The task of graphical model selection is to infer this edge set E∗ using

the n samples. Any estimator Ên for this task is said to be sparsistent if it

satisfies P
[
Ên = E∗

]
→ 1 as n→∞.
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2.2.1 `1-regularized estimator

We now briefly review the state-of-the-art estimator of [49] (called the

`1-estimator henceforth). The key idea there is to estimate the true graph E∗

by estimating the neighbourhood of each node r ∈ V in turn. Suppose N∗(r)

denotes the true neighbours of the vertex r, so that N∗(r) = {t | (r, t) ∈ E∗}.

The `1-estimator uses sparsistent neighborhood estimators N̂n(r) ⊂ V ∀ r ∈ V

s.t. P
[
N̂n(r) = N∗(r)

]
→ 1 as n → ∞, to then obtain a sparsistent estimate

of the entire graph.

Note that for any r ∈ V , the set of parameters θ∗ is related to the

true neighbourhood as N∗(r) = {t | θ∗rt 6= 0, t ∈ V }. The `1-estimator exploits

this to pose neighbourhood selection as an `1-regularized logistic regression

problem, minimizing the negative conditional log-likelihood for each node with

an additional `1-penalty. Note that for a set of parameters θ and a node r ∈ V ,

the conditional distribution of Xr conditioned on XV \r is given as

Pθ
(
xr |xV \r

)
=

exp(2xr
∑

t∈V \r θrtxt)

1 + exp(2xr
∑

t∈V \r θrtxt)
. (2.3)

Defining θ\r = {θrt | t ∈ V, t 6= r} and x\r = {xt | t ∈ V, t 6= r}, the negative

conditional log-likelihood of the samples D would be given by

L(θ\r;D) =

1

n

n∑
i=1

{
log
(

1 + exp
(

2x(i)
r θ

T
\rx

(i)
\r

))
− 2x(i)

r θ
T
\rx

(i)
\r

}
.

(2.4)

The `1-estimator solves the following optimization problem for each

r ∈ V :

arg min
θ\r∈Rp−1

{
L(θ\r;D) + λ‖θ\r‖1

}
. (2.5)
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Let θ̂\r(D) correspond to the solution of (2.5). Then the neighbourhood es-

timate is given as the non-zero locations or support of θ̂\r(D): N̂λ(r;D) =

Support
(
θ̂\r(D)

)
. Finally, the edge estimate is computed by taking the union

of all neighbourhood estimates: Ên,λ = ∪
r∈V
{(r, t) | t ∈ N̂λ(r;D)}.

The `1-estimator has been shown to have strong statistical guarantees

under certain incoherence conditions. Below, we restate the incoherence con-

ditions of [49], for the sake of completeness. These are stated in terms of

the Hessian (in expectation) of the likelihood function for the true parameter

vector θ∗\r, which is given as Q∗r = E
[
∇2 logPθ∗

(
xr |xV \r

)]
. For brevity, we

shall briefly write Q∗r as Q∗, the true neighbourhood set N∗(r) as N, and its

complement, V \N∗(r) as Nc. Then, their incoherence conditions (with r ∈ V

being implicit in Q∗ and N) are :

(A1) ∃ a const. Cmin > 0 s.t. Λmin (Q∗NN) ≥ Cmin. Also, ∃ a const. Cmax s.t.

Λmax

(
E
[
XV \rX

T
V \r

])
≤ Cmax

(A2) ∃ a constant α ∈ (0, 1] s.t.
∥∥Q∗NcN (Q∗NN)−1

∥∥
∞ ≤ 1− α

Note that Λmin(·) and Λmax(·) correspond to the minimum and maximum

eigenvalues of a matrix respectively, and ‖·‖∞ corresponds to the standard

`∞-matrix norm.

Now, we restate the main theorem below from [49] using our notation,

and refer the reader to their paper for details.
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Theorem 2.1 (Guarantee for the `1-estimator; see [49]). Suppose an Ising

graphical model with true parameter set θ∗ satisfies conditions (A1) and (A2)

for all nodes r ∈ V . Consider any r ∈ V , and let dr = ‖θ∗\r‖0 denote its degree.

Then, there exist constants c1, c2, c3, c4 such that if we have λ ≥ c1

√
log p
n

and

n > c2 d
3
r log p and N∗sub(r) =

{
t ∈ N∗(r)

∣∣∣ |θ∗rt| ≥ c3

√
drλ
}

, then

P
(
N̂λ(r;D) = N∗sub(r)

)
≥ 1− 2 exp

(
−c4λ

2n
)
. (2.6)

Based on Theorem 2.1, and a simple application of the union bound,

we can see that the sample complexity for recovering the entire graph scales

as n = Ω(d3
max log p) samples, where dmax is the maximum degree of the graph

G∗ = (V,E∗). However, as detailed earlier, dmax may be huge for hub-graphs,

so that the sample complexity of the `1-estimator will be large for such graphs.

2.3 Sufficiency Measure Based Estimator

As noted in the introduction, our approach is based on using a quanti-

tative criterion for checking whether or not the given number of samples suffice

for regularized node-conditional distribution estimation as in the `1-estimator

at a given node. Given such a criterion, we can then take the union of only

those neighborhood estimates which the method is guaranteed to estimate

accurately, and not consider the “junk” estimates. Towards building such a

observable “sufficiency” criterion, we first setup some notation.
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2.3.1 Sufficiency Measure

For every r ∈ V and t ∈ V \r, we define pr,n,λ(t) = P
(
t ∈ N̂λ(r;D)

)
, as

the probability of variable t being included in the neighbourhood estimate of

variable r, estimated by the `1-estimator with regularization λ, given n samples

drawn i.i.d. from the underlying Ising model. Note that the probability is

taken over n samples. Based on Theorem 2.1, we have the following simple

corollary.

Corollary 2.1. For any r ∈ V , suppose θ∗ and (n, λ) satisfy all conditions of

Theorem 2.1 with constants c1, c2, c3, c4; then

pr,n,λ(t) ≥ 1− 2 exp
(
−c4λ

2n
)

if t ∈ N∗sub(r) and,

pr,n,λ(t) ≤ 2 exp
(
−c4λ

2n
)

if t /∈ N∗sub(r),
(2.7)

where N∗sub(r) =
{
t ∈ N∗(r)

∣∣∣ |θ∗rt| ≥ c3

√
dλ
}

.

Thus, when the number of samples n is sufficient for neighborhood re-

covery, depending on whether node t is in the true neighborhood of r, pr,n,λ(t)

goes extremely close to zero or one; equivalently pr,n,λ(t) (1− pr,n,λ(t)) goes

extremely close to zero. Building on this observation, let us define the “suffi-

ciency” measure

Mr,n,λ = max
t∈V \r

pr,n,λ(t) (1− pr,n,λ(t)) . (2.8)

It can thus be seen that this sufficiency measure goes to zero when the number

of samples n is sufficient for recovering the neighborhood of node r.
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In the sequel, we will analyze a natural U -statistic to estimate this

sufficiency measure from data. We first require some more notation. For any

b
(
1 < b < n

2

)
, we define Sb(D) as the set of all possible subsamples of size b,

drawn from D without replacement, so that

Sb(D) = {(x(i1), . . . , x(ib)) | 1 ≤ i1 < . . . < ib ≤ n}. (2.9)

Given any subsample Db ∈ Sb(D) of size b, let F t
λ,r(Db) be a function

such that

F t
λ,r(Db) =

{
1 if t ∈ N̂b,λ(r;Db)

0 otherwise.
(2.10)

Now, we consider the U-statistic (of order b),

p̃r,b,λ(t;D) =
1(
n
b

) ∑
Db∈Sb(D)

F t
λ,r(Db). (2.11)

Note that E [p̃r,b,λ(t;D)] = pr,b,λ(t). We are now ready to provide the

U -statistic estimate of the sufficiency measure in (2.8):

M̃r,b,λ(D) = max
t∈V \r

p̃r,b,λ(t;D) (1− p̃r,b,λ(t;D)) . (2.12)

Computing M̃r,b,λ(D) would require computing p̃r,b,λ(t;D) for every t ∈

V \ r, which in turn would require considering all possible
(
n
b

)
sub-samples of

D. However, as we show below (see also analyses in [37, 44] on sub-sampling),

it suffices to choose a number N ≥ n/b of subsamples drawn at random. Thus,

our actual estimate for pr,b,λ(t) is

p̂r,b,λ(t;D) =
1

N

N∑
i=1

F t
λ,r(Di), (2.13)
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where D1, . . . , DN are subsamples chosen independently and uniformly at ran-

dom from Sb(D), and the estimate for the sufficiency measure is

M̂r,b,λ(D) = max
t∈V \r

p̂r,b,λ(t;D) (1− p̂r,b,λ(t;D)) . (2.14)

We describe the procedure to calculate M̂r,b,λ(D) in Algorithm 2.1.

Algorithm 2.1 Estimating M̂r,b,λ(D)

Input : Data D := {x(1), . . . , x(n)}, Regularization parameter λ, Sub-sample
size b , No. of sub-samples N

Output: An estimate of M̂r,b,λ(D)

∀ t ∈ V \ r, p̂r,b,λ(t;D)← 0
for i = 1 to N do

Pick a sub-sample Di chosen uniformly randomly from Sb(D)

Compute N̂b,λ(r;Di) by solving (2.5) (`1-estimate)

for t ∈ N̂b,λ(r;Di) do
p̂r,b,λ(t;D)← p̂r,b,λ(t;D) + 1

∀ t ∈ V \ r, p̂r,b,λ(t;D)← p̂r,b,λ(t;D)/N

M̂r,b,λ(D)← max
t∈V \r

p̂r,b,λ(t;D) (1− p̂r,b,λ(t;D))

Once M̂r,b,λ(D) has been computed, we have the following lemma which

shows that it is ε-close to Mr,b,λ with high probability, provided we have suffi-

ciently many samples .

Proposition 2.1 (Concentration of M̂r,b,λ(D) to Mr,b,λ). For any δ ∈ (0, 1]

and ε > 0, if we have n > 18b
ε2

[log p+ log (4/δ)] and N ≥ dn
b
e, then,

P
(
|M̂r,b,λ(D)−Mr,b,λ| ≤ ε

)
≥ 1− δ. (2.15)
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2.3.2 Behavior of the Sufficiency Measure

The key question of interest is whether we can use the sufficiency mea-

sure Mr,b,λ (via its sample estimate M̂r,b,λ(D)) to detect “hub-nodes” that we

define specifically as those nodes for which we do not have enough samples for

the `1-estimator to be sparsistent. Correspondingly, let us define “non-hub”

nodes in this context as those nodes for which we do have enough samples for

the `1-estimator to be sparsistent. We formalize these notions below.

Definition 1 (Non-Hub Node vs. Hub Node). Assume that the true parameter

set θ∗ satisfies the incoherence conditions, (A1) and (A2), for all nodes r ∈ V .

Consider any node r ∈ V . It is termed a “non-hub node” w.r.t. n samples if

∃ a regularization parameter λ s.t. (n, λ) satisfy all conditions of Theorem 2.1

with constants c1, c2, c3, c4. Otherwise, the node is termed a “hub” node.

Since the sample complexity of neighborhood estimation via the `1-

estimator scales cubically with the node-degree (from Theorem 2.1), hub nodes

as we define here correspond loosely to high-degree nodes, but in the sequel,

the exact specification of “hub” and “non-hub” nodes are as detailed by the

definition above.

Before we describe the behaviour of Mr,b,λ for “hub” nodes and “non-

hub” nodes, we impose the following technical assumptions on the behaviour

of pr,b,λ(t) needed for our algorithm to work.

Assumption 2.1. ∀ r ∈ V , pr,b,λ(t) satisfies the following: For fixed b and
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some constant c(> 0), let

λmin(t) = min {λ ≥ 0 | pr,b,λ(t) ≤ 1− 2 exp (−c log p)} ,

and,

λmax(t) = max {λ ≥ 0 | pr,b,λ(t) ≥ 2 exp (−c log p)} .

(2.16)

Then, λmin(t) and λmax(t) are attained at finite values s.t.

(a) For any t ∈ V \ r and λ ∈ (λmin(t), λmax(t)), we have

pr,b,λ(t) ∈ [2 exp(−c log p), 1− 2 exp(−c log p)] . (2.17)

(b) For all t /∈ N∗(r),

λmin(t) ≤ λmin < λmax ≤ λmax(t), (2.18)

for some finite λmin, λmax ≥ 0 independent of t.

(c) For any t ∈ V \ r, ∃ t′ /∈ N∗(r) : λmin(t′) < λmax (t).

Additionally, pr,b,λ(t) is a continuous function of λ.

To build intuition for the assumptions, as well as our analysis in the se-

quel, it will be instructive to consider the behavior of the inclusion probability

pr,b,λ(t) as we increase λ from zero to infinity. When λ is zero, the `1-estimator

reduces to the unregularized conditional MLE: any variable t ∈ V \r will al-

ways occur in the neighborhood estimate of node r, and pr,b,λ(t) will be equal

to one. As λ increases, the inclusion probability in turn reduces, and at a very

large value of λ, the inclusion probability pr,b,λ(t) will become equal to zero:
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this follows from the property of the `1-estimator, where there exists a large

regularization weight when the parameter estimate becomes equal to zero.

In the assumptions above, it can be seen that if λmin(t) and λmax(t)

exist, then by definition, we must have λmin(t) ≤ λmax(t). Part (a) of the

assumption is a smoothness constraint that ensures that if the probability of

inclusion or exclusion of a variable into a neighbourhood gets close to 1, then

it stays close to 1, and does not vary wildly. Part (b) ensures that ranges of

[λmin(t), λmax(t)] intersect at least for all irrelevant variables t /∈ N∗(r). This

is a very mild assumption that ensures that the inclusion probability of an

irrelevant variable does not stay exactly at one as we increase λ, and reduces

at least very slightly (below the threshold of 1− 2 exp(−c log p)) before other

irrelevant variables have their inclusion probability drop from one all the way

to zero. Part (c) is a closely related mild assumption that ensures that the

probability of inclusion of atleast one irrelevant variable would have dropped by

a small value from 1 before any other variable has its inclusion probability drop

from one all the way to zero. We note that these mild technical assumptions

on the inclusion probabilities always hold in our empirical observations.
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Figure 2.1: Behaviour of Mr,b,λ for non-hub nodes and hub-nodes in a star
graph on p = 100 nodes.

Armed with these assumptions, we now analyze the behavior of our

sufficiency measure Mr,b,λ. Our next proposition shows that there exists atleast

one “bump” in the graph of the sufficiency measure against the regularization

penalty λ.

Proposition 2.2 (“First Bump”). Suppose Assumption 2.1 holds with con-

stant c > 0. Let

γ = 2 exp(−c log p) (1− 2 exp(−c log p)) . (2.19)

For any node r ∈ V , let λl = inf {λ ≥ 0 : Mr,b,λ ≥ γ} be the smallest regular-

ization penalty where the sufficiency measure is greater than a small threshold

above zero, and λu = inf {λ > λl : Mr,b,λ < γ} be the next value of the regular-

ization penalty where the sufficiency measure falls below that threshold. Then,
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(a) the infima above are attained at finite values, and (b) for any k ∈ (γ, 1/4],

∃λ ∈ (λl, λu) s.t. Mr,b,λ ≥ k.

Our next two propositions track the behavior of the `1-estimate N̂b,λ(r;D)

after the first bump outlined above. The very next proposition provides the

behavior for “non-hub” nodes.

Proposition 2.3 (Behavior at λu for “non-hub nodes”). Let r ∈ V be a “non-

hub node” w.r.t. b samples, and constants for all conditions of Theorem 2.1

being c1, c2, c3, c4. Let Assumption 2.1 hold for a constant c > 1 with c < c1c4,

and let λu be as defined in Proposition 2.2. Then, N̂b,λu(r;D) recovers the

neighborhood with high probability:

P
(
N∗sub(r) ⊆ N̂b,λu(r;D) ⊆ N∗(r)

)
> 1− 2 exp (−(c− 1) log p) ,

where N∗sub(r) =
{
t ∈ N∗(r)

∣∣∣ |θ∗rt| ≥ c3

√
dλ
}

.

The proposition thus tells us that for “non-hub nodes”, after the first

bump when the value of Mr,b,λ becomes very close to zero, the `1-estimator

recovers N∗sub(r) w.h.p. (as also indicated by Theorem 2.1). Note that when

increasing λ further, there would be further bump(s): the value of Mr,b,λ would

rise, but would again drop back to zero: when λ is very large, the neighborhood

estimate is null, so that the probability for any node to be in the neighborhood

will be exactly zero; so that the sufficiency measure will be equal to zero.

Figure 2.1b demonstrates this behavior in a simulated dataset.
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On the other hand, for “hub nodes”, the behavior of N̂b,λ(r;D) at

λ = λu, defined in Proposition 2.2, is given by the following proposition.

Proposition 2.4 (Behavior at λu for “hub nodes”). Let r ∈ V be a “hub

node” w.r.t. b samples. Also, let Assumption 2.1 hold with constant c > 1.

Then N̂b,λu(r;D) excludes irrelevant variables with high-probability:

P
(
N̂b,λu(r;D) ⊆ N∗(r)

)
> 1− 2 exp (−(c− 1) log p) .

The proposition thus tells us that for “hub nodes”, after the first bump

when the value of Mr,b,λ becomes very close to zero, irrelevant variables are

excluded, though however there is no guarantee on relevant variables being

included. Empirically in fact, the end of the first bump typically occurs at a

very large value of λ when all variables are excluded; in particular, the graph

of Mr,b,λ against λ typically has a single bump. Figure 2.1a demonstrates this

behavior in a simulated dataset.

Propositions 2.3 and 2.4 thus motivate using the behaviors of the suffi-

ciency measure as outlined above to distinguish hub nodes and non-hub nodes;

and then compute the graph estimate using the neighborhood estimates from

the non-hubs alone. This natural procedure is described in Algorithm 2.2.

The following theorem is a natural corollary of Theorem 2.1, and Propo-

sitions 2.3 and 2.4. Note that in the below, we assume that the true parameter

set θ∗ satisfies the incoherence conditions, (A1) and (A2), for all nodes r ∈ V ;

22



Algorithm 2.2 Algorithm to compute neighborhood estimate N̂(r), for each

node r ∈ V , and the overall edge estimate Ê

Input : Data D := {x(1), . . . , x(n)} , Regularization parameters Λ :=
{λ1, . . . , λs} , Sub-sample size b, No. of sub-samples N , Thresholds
on sufficiency measure tl and tu, Node r ∈ V

Output: An estimate N̂(r) of the neighborhood for each r ∈ V , and the

overall edge estimate Ê

foreach r ∈ V do

∀λ ∈ Λ, Compute M̂r,b,λ(D) using Algorithm 2.1

λ′ ← Smallest λ ∈ Λ s.t. M̂r,b,λ(D) > tu
Λ← {λ ∈ Λ : λ > λ′}
λ0 ← Smallest λ ∈ Λ s.t. M̂r,b,λ(D) < tl

N̂(r)←
{
t | p̂r,b,λ0(t;D) ≥ 1+

√
1−4tl
2

}
Ê ←

⋃
r∈V
{(r, t) | t ∈ N̂(r)}

and that Assumption 2.1 holds ∀ r ∈ V , with an appropriate constant c > 2,

satisfying conditions of Proposition 2.3 for “non-hub nodes”.

Theorem 2.2 (Guarantee for the estimator of Algorithm 2.2). Suppose we run

Algorithm 2.2 setting tl = 2 exp(−c log p)(1−2 exp(−c log p))+ε, tu = 1/4−ε,

the sub-sample size b = f(n) (with
√
n ≤ f(n) < n/2), and number of sub-

samples N ≥ dn/f(n)e, such that

n > 18f(n) [log p+ log (4/δ)] /ε2. (2.20)

For any degree-value d ∈ {1, . . . , p} and constant c′′ > 0, denote

Ed =

{
(s, t) ∈ E∗

∣∣∣ min(d(s), d(t)) ≤ d, |θ∗st| ≥ c′′
√
d log p

n

}
(2.21)

where d(v) corresponds to the degree of vertex v in E∗. Then, there exist
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constants c, c′, c′′, c′′′, such that if the sub-sample size scales as

f(n) > c′d3 log p, (2.22)

then the graph structure estimate Ê of Algorithm 2.2 satisfies:

P
(
Ed ⊆ Ê ⊆ E∗

)
≥ 1− 2 exp (−c′′′ log p)− δ. (2.23)

Now, let us define the critical degree, dc, of a graph G∗ = (V,E∗), as

the minimum degree such that neighborhoods of vertices with at most the said

degree cover the whole graph, i.e.

dc = min d

s.t. ∀ (s, t) ∈ E∗, either d(s) ≤ d or d(t) ≤ d.
(2.24)

The following corollary then gives the sample complexity for exact re-

covery of the graph, assuming that the edges have sufficient weight.

Corollary 2.2. Let the conditions of Theorem 2.2 be satisfied, with b = f(n)

as the sub-sample size. Let dc be the critical degree of the graph G∗. Then

there exist constants c′, c′′, c′′′ s.t. if the sub-sample size scales as

f(n) > c′d3
c log p, (2.25)

and |θ∗st| ≥ c′′
√

dc log p
n
∀ (s, t, ) ∈ E∗, then

P
(
Ê = E∗

)
≥ 1− 2 exp(−c′′′ log p), (2.26)

where Ê is the graph structure estimate from Algorithm 2.2.
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Note that we may choose f(n) = c′n1−ρ, for some value of ρ ∈ (0, 0.5],

as the sub-sample size. The choice of ρ would be governed by dc for the graph

under consideration. For example, if dc is a constant (e.g. dc = 1 in a star

graph), then the optimal choice of ρ would be 0.5, yielding a overall sample

complexity of Ω ((log p)2).

2.4 Experiments

In this section, we present experimental results demonstrating that our

algorithm does indeed succeed in recovering graphs with a few hubs.

2.4.1 Synthetic Data

We first performed structure learning experiments on simulated data

using 3 types of graphs:

(a) a collection of stars with p = 100 nodes involving 5 hub nodes with

degree d = 19, each connected to 19 other degree d = 1 nodes.

(b) a grid graph with 81 nodes (9 × 9), with 2 additional high degree hub-

nodes of degree d = 12 (so that p = 83) attached to random points in

the grid.

(c) a power-law graph on p = 100 nodes generated using the preferential

attachment scheme [6].

For each graph, we considered a pairwise Ising model with edge weight θ∗rt =

ω
max(dr,dt)

, for some ω > 0, and where dr and dt were the degrees of r and t
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respectively. For each such Ising model, we generated n i.i.d. samples D =

{x(1), . . . , x(n)} using Gibbs sampling.
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(a) Stars Graph
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(b) Hub+Grid Graph
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(c) Preferential Attachment Graph

Figure 2.2: Plots of Average Hamming Error vs Number of Samples

In all our experiments, for our algorithm (denoted as SL1 in our plots),

the value of N , the number of times to subsample, was fixed to 60. We

set lower and upper thresholds on the sufficiency measure as tl = 0.1 and

tu = 0.2. The number of subsamples was set to b = min
(
20
√
n, n

2

)
and the set
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of regularization parameters was taken as Λ = {0.005, 0.01, 0.015, . . . , 1}. We

performed comparisons with the `1-estimator [49] (denoted as L1 in our plots)

and the reweighted `1-estimator for scale-free graphs [38] (denoted as RWL1

in our plots). For both these methods, the best regularization parameter

was chosen using the Bayesian information criterion (BIC) from the grid of

regularization parameters Λ. Figure 2.2 shows plots of the Average Hamming

Error (i.e. average number of mismatches from the true graph) with varying

number of samples for our method and the baselines, computed over an average

of 10 trials. Since our estimate uses subsamples to compute its sufficiency

measure, when the number of samples is extremely low, the deviation of the

sample sufficiency measure estimate from the population sufficiency measure

becomes large enough so that the resulting mistakes made by our method in

designating hubs and non-hubs increase its overall Hamming error. We note

however that at such extremely low number of samples, it can be seen that

the overall Hamming error of any estimator is quite high, so that none of the

estimators provide useful graph estimates in any case. It can be seen that other

than at such extremely few samples, we achieve much lower Hamming error

than both L1 and RWL1, and which is particularly pronounced for scale-free

graphs such as those provided by the preferential attachment model.
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2.4.2 Real Data

(a) L1 with BIC (b) Our Algorithm

Figure 2.3: Graphs obtained using US Senate voting records data from the
109th congress [5]

We ran our algorithm on a data set consisting of US senate voting

records data from the 109th congress (2004 - 2006) [5]. It consists of 100

nodes (p = 100), corresponding to 100 senators. There are 542 samples, each

representing a bill that was put to vote. For each (senator, bill) pair, the vote

is recorded as either a 1 (representing a yes), a −1 (representing a no) or a 0

(representing a missed vote). For the purpose of the experiment, all 0 entries

were replaced by −1, as also done in [5].
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Our algorithm was run with the parameters N = 60, tl = 0.1, tu =

0.2, b = 450 and Λ = {0.005, 0.01, 0.015, . . . , 1}. Figure 2.3b shows the graph

obtained using our method, whiles Figure 2.3a shows the graph obtained by

running the `1-estimator [49] with the regularization parameter being chosen

using the Bayesian Information Criterion (BIC) from the set of regularization

parameters Λ.

We see that the graph obtained using the `1-estimator with BIC is

much denser than what we obtain. This also corroborates the observation

of [37], that BIC leads to larger density in high dimensions. A few of the

nodes in the graph using our algorithm are seen to have 0 degree, and are thus

disconnected from the graph. This might be because these might be higher

degree “hub” nodes, but for which the number of samples is not sufficient

enough to provide a reliable estimate of the neighbourhoods vis-à-vis their

degree. Overall, the sparse graph we obtained using our reliability indicator

based method suggests the need for such reliability indicators to prevent the

inclusion of spurious edge-associations.
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Chapter 3

Kernel Ridge Regression via Partitioning2

3.1 Introduction

Kernel methods find wide and varied applicability in machine learning.

One such application of kernels is the problem of Kernel Ridge Regression

(KRR). Given covariate-response pairs (x, y), the goal is to compute a kernel-

based function f such that f(x) approximates y well on average. In this

regard, several learning methods with different kernel classes have been shown

to achieve good predictive performance. Despite their good generalization,

kernel methods suffer from a computational drawback if the number of samples

n is large — which is more so the case in modern settings. They require at

least a computational cost of O(n2), which is the time required to compute the

kernel matrix, and O(n3) time when the kernel matrix also has to be inverted,

which is the case for KRR.

Several approaches have been proposed to mitigate this, including Nyström

approximations [2, 4, 51], approximations via random features [15, 45, 46, 63],

and others [48, 62]. While these approaches help computationally, they typi-

2This chapter is based on [59]. The author of this work was the first author and primary
contributor to [59].
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cally incur an error over-and-above the error incurred by a KRR estimate on

the entire data. Another class of approaches that may not incur such an error

are based on what we loosely characterize as divide-and-conquer approaches,

wherein the data points are divided into smaller sets, and estimators trained on

the divisions. These approaches may further be categorized into three main

classes: division by uniform splitting [67], division by clustering [24, 28] or

division by partitioning [23]. The latter may also include local learning ap-

proaches, which are based on estimates using training points near a test point

[8, 25, 52, 65]. Given this considerable line of work, there is now an understand-

ing that these divide-and-conquer approaches provide computational benefits,

and yet have statistical performance that is either asymptotically equivalent,

or at most slightly worse than that of the whole KRR estimator. Please see

[23, 28, 67] and references therein for results reflecting this understanding for

uniform splitting, clustering and partitioning respectively. However, these re-

sults have restrictive assumptions, applicability or other limitations, such as

requiring the covariates/responses to be bounded [23], or only being applicable

to specific kernels e.g. Gaussian [23] or linear [24], or only being targeted to

classification [24, 28], or providing error rates only on the training error [28].

Moreover, approaches based on uniform splitting, such as [67], can suffer from

worse approximation error, as alluded to shortly.

In this work, we consider a partitioning based divide-and-conquer ap-

proach to kernel ridge regression. We provide a refined analysis, applicable

to general kernels, which leads us to this surprising conclusion: the partition-
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ing based approach not only has computational benefits outlined in previous

papers, but also has strong statistical benefits when compared to the whole

KRR estimator. In other words, based on both a statistical and computa-

tional viewpoint, we are able to recommend the use of the partitioning based

approach over the whole KRR approach.

The partitioning based approach is: Given n sample points, we divide

them into m groups based on a fixed disjoint partitioning of input space X that

the samples are drawn from. One way to obtain this partition is via clustering,

however, in principle, any partition that satisfies certain assumptions (detailed

in Section 3.4.1) would be acceptable. Once the samples have been divided,

we learn a kernel ridge regression estimate for each partition using only its

own samples. The conquering step i.e. computing the overall estimator, f̂C ,

is then simple: Each individual estimator is applied to its respective partition.

Thus, to perform prediction for a new point, we simply identify its partition,

and use the estimator for that partition. Now, partitioning has a clear com-

putational advantage since each estimate is trained over only a fraction of the

points. Moreover, partitioning may provide statistical advantages as well if

there is an inherent approximation error in the problem i.e., the true regressor

function, f ∗, lies outside the space of kernel-based functions. In this case, the

KRR estimator on the whole data, say f̂whole, or the KRR estimator based on

uniform splitting, say f̂avg, both may be viewed as estimating the best single

kernel-based function that approximates f ∗. However, if we partition, then we

are estimating the best m-piece-wise kernel-based function to approximate f ∗.
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Indeed, we can show that the approximation error for f̂C is lesser than f̂avg,

and corroborate this experimentally. The residual error terms on the other

hand are typically of the same order, so that the overall generalization error

for our method is lower. In addition, there is yet another potential compu-

tational advantage of partitioning: prediction is faster since for a new point,

the kernel values must be computed w.r.t. only a fraction of the points (as

opposed to all the points for f̂whole or f̂avg).

3.1.1 Related Work

We briefly review some of the earlier mentioned work that provide the-

oretical analyses of divide and conquer approaches, based on uniform split-

ting, and partitioning. [67] analyze the uniform splitting approach where the

samples are split uniformly at random, followed by an averaging of the KRR

estimate of each split. The authors have derived generalization rates for this

estimator, and matched optimal rates as long as the number of splits is not

large, and the true function f ∗ lies in the specified space of kernel-based func-

tions. However, as mentioned previously, such an estimator can have worse

approximation error than our estimator, f̂C , when the true function, f ∗, lies

outside the space of kernel-based functions. [23] analyze a partition based

approach as in this work: their estimator works by partitioning the input

space, and predicting using KRR/SVM estimates over each partition individ-

ually. For this estimator, [23] derive generalization rates when using Gaussian

kernels, and under additional restrictions: they require bounded covariates,
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‖x‖ ≤ B, bounded response, |y| ≤ M , and that each partition be bounded

by a ball of suitable radius, R.1 Given these restrictions, they show suitable

choices for R and the Gaussian kernel scale γ which yield optimal rates when

the true function f ∗ lies in a smooth Sobolev/Besov space. In contrast, we

provide a more general analysis that does not enforce a bound on the covari-

ates, response, or the size of the partition. Moreover, we are able to apply it

to kernels other than the Gaussian kernel, and achieve minimax optimal rates

when the true function, f ∗, lies in the space of kernel-based functions. When

it doesn’t, we provide an oracle inequality similar to [23], which could then

be specialized to obtain similar rates for their specific setting. More impor-

tantly, our analysis is also able to show that in general, the approximation

component of this inequality is lesser than the approximation component of

the whole KRR estimator, while the residual components can be of the same

order.

From a theoretical standpoint, the generalization error for KRR has

been studied extensively — an incomplete list includes [10, 14, 22, 29, 54,

56, 66]. We shall not delve into a comparison among these, but instead refer

the interested reader to [29, Section 2.5], [22, Section 3], for more details. Of

relevance to our analysis is the approach in [29], wherein the generalization

error is broken down into contributions of regularization, bias and variance,

and each of these is bounded separately. We adopt a similar strategy to control

1One way of obtaining such partitions, as suggested by the authors, is through the
Voronoi partitioning of the input space.
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the expected error of our estimator, f̂C .

The rest of this chapter is organized as follows. Section 3.2 sets up no-

tation and introduces the problem. Section 3.3 details our DC-estimator f̂C .

Section 3.4 presents bounds on its generalization error. Section 3.5 instan-

tiates these bounds for two kernel classes, and discusses the approximation

component of f̂C . Finally, Section 3.6 provides empirical performance results.

All proofs are can be found in Appendix C.

3.2 Notation and Preliminaries

Reproducing Kernel Hilbert Spaces. Consider any set X, typically

the space of the input data. A function K : X × X → R, is called a kernel

function if it is continuous, symmetric, and positive definite. With any kernel

function K, one can associate a unique Hilbert space called the Reproducing

Kernel Hilbert Space of K (abbreviated as RKHS henceforth). For x ∈ X,

let φx : X → R be the function φx(·) := K(x, ·). Then, the unique RKHS

corresponding to kernel K, denoted as H, is a Hilbert space of functions from

X to R defined as: H := span{φx}

Thus, any f ∈ H has the representation f =
∑

j αjφxj =
∑

j αjK(xj, ·)

with αj ∈ R, ∀ j. The inner product on H is given as: 〈
∑

j αjφxj ,
∑

k βkφxk〉H =∑
j

∑
k αjβkK(xj, xk). The inner product also induces a norm on H, given as:

‖f‖H =
√
〈f, f〉H, for any f ∈ H.

Kernel Ridge Regression. We are given a training set of n i.i.d.
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samples, D = {xi, yi}ni=1. x (and xi), also called the covariate, is a random

variable in the input space X with distribution P. y (and yi) is a random

variable in the output space Y, also called the response. We consider Y ⊆ R

and assume an additive noise model for relating the response to the covariate:

y = f ∗(x) + η, (3.1)

where η is the random noise variable, and f ∗ : X→ R is an unknown function.

The goal of regression is to compute the function (or an approximation to) f ∗.

We also assume that the noise has zero mean and bounded variance, E [η|x] = 0

and E [η2|x] ≤ σ2, and that f ∗ is square integreable with respect to the measure

on X i.e. f ∗ ∈ L2(X,P) := {f : X→ R | ‖f‖2
L2

= EP [f(x)2] <∞}

A Kernel Ridge Regression (abridged as KRR) estimator approximates

f ∗ by a function in the RKHS space H (corresponding to kernel K). We

require that the RKHS space H ⊂ L2(X,P)2. The KRR estimate f̂λ ∈ H is

obtained by solving the optimization problem:

f̂λ = arg min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ ‖f‖2

H (3.2)

where λ > 0 is the regularization penalty. This is tractable since, by the

representer theorem, we have the relation f̂λ =
∑n

i=1 αiφxi , with α ∈ Rn

having the closed form expression: α = (G+ nλI)−1y, where G ∈ Rn×n is the

kernel matrix, i.e. Gij = K(xi, xj) (i, j ∈ [n]).

2This means ∀x, Ey∼P[K(x, y)2] < ∞ — which is always true for several kernel classes,
including Gaussian, Laplacian, or any trace class kernel w.r.t. P
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Generalization/Prediction Error. For any estimator f̂ : X → R,

the generalization error quantifies closeness to f ∗, by measuring the average

prediction error. It is defined as:

Err(f̂) := E
[
(f̂(x)− f ∗(x))2

]
=
∥∥∥f̂ − f ∗∥∥∥2

L2

(3.3)

When the estimator is random, for example the KRR estimate f̂λ in Eq. (3.2)

depends on random samples, we may quantify the average error over the ran-

domness i.e. bound ED[Err(f̂λ)], where the expectation is taken over the

samples D. We provide bounds on the quantity ED[Err(f̂C)], where f̂C is our

divide-and-conquer estimator (DC-estimator) described in Section 3.3.

Partition-specific notation. Since our estimator, f̂C , is based on

partitioning, we setup some notation here for partition-specific quantities that

play a role throughout the analysis. We say that the input space X has a

disjoint partition {C1, . . . , Cm} if: X = ∪mi=1Ci, and Ci ∩ Cj = {φ} ∀ i, j ∈

[m], i 6= j. Given data D = {(x1, y1), . . . , (xn, yn)}, we define a partition-based

empirical covariance operator as: Σ̂i = 1
n

∑n
j=1(φxj ⊗ φxj)1 (xj ∈ Ci), where

1 (·) denotes the indicator function and φx⊗φx denotes the operator φx 〈φx, ·〉H.

We define its population counterpart as: Σi = E [(φx ⊗ φx)1 (x ∈ Ci)]. Note

the relation: Σ =
∑m

i=1 Σi, where Σ = E [φx ⊗ φx] is the overall covariance

operator.

We let {λij, vij}∞j=1 denote the collection of eigenvalue-eigenfunction pairs

for Σi. For any λ > 0, we define a spectral sum for Σi, Si(λ) =
∑

j

λij
λij+λ

. Sim-

ilarly, letting {λj, vj}∞j=1 be the eigenvalue-eigenfunction pairs for the overall
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covariance Σ, the corresponding sum for Σ is defined as S(λ) =
∑

j
λj

λj+λ
. The

quantity S(λ) has appeared in previous work on KRR [29, 66, 67], and is called

the effective dimensionality of the kernel K (at scale λ). Typically, it plays

the same role as dimension does in finite dimensional ridge regression. We

shall refer to the quantity Si(λ) as the effective dimensionality of partition Ci.

Finally, we let pi = P(x ∈ Ci) denote the probability mass of partition Ci.

3.3 The DC-estimator: f̂C

When the number of samples n is large, solving Eq. (3.2) may be

computationally prohibitive, requiring O(n3) time in the worst case. A simple

strategy to tackle this is by dividing the samples D into disjoint partitions,

and computing an estimate separately for each partition. In this work, we

consider partitions of D which adhere to an underlying disjoint partition of

the input space X. Suppose that the input space X has a disjoint partition

{C1, . . . , Cm}. Note that m denotes the number of partitions. Also, suppose

that given any point x ∈ X, we can find the partition it belongs to from the

set {C1, . . . , Cm}.

Now, we divide the data set D in agreement with this partitioning of

X i.e. we split D = {D1, . . . , Dm} with Di = {(xj, yj) |xj ∈ Ci, j = 1, . . . , n}.

Let |Di| = ni. Then, for any partition i ∈ [m], we compute a local estimator

using only the points in its partition:

f̂i,λ = arg min
f∈H

1

ni

∑
j: (xj ,yj)∈Di

(yj − f(xj))
2 + λ ‖f‖2

H (3.4)
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where λ > 0 is the regularization penalty. Finally, the overall estimator, f̂C ,

comprises of the local estimators applied to their corresponding partitions:

f̂C(x) = f̂i,λ(x) if x ∈ Ci (3.5)

In practice, one can use a clustering algorithm to cluster the points in D, as

well as determine membership for new points x.

3.4 Generalization Error of f̂C

In this section we quantify the error ED
[
Err(f̂C)

]
, where f̂C is the DC-

estimator from Eq. 3.5. First, we observe that Err(f̂C) can be decomposed as

a sum of errors of the local estimators, f̂i,λ, on their corresponding partitions

Ci, i ∈ [m]. We have:

Err(f̂C) = E
[
(f ∗(x)− f̂C(x))2

]
=

m∑
i=1

E
[
(f ∗(x)− f̂i,λ(x))2

1 (x ∈ Ci)
]

=
m∑
i=1

Erri(f̂i,λ)

(3.6)

where 1 (·) denotes the indicator function, and we have defined the partition-

wise error: Erri(f̂i,λ) := E[(f ∗(x)− f̂i,λ(x))2
1 (x ∈ Ci)]. By linearity of expec-

tation, ED
[
Err(f̂C)

]
=
∑m

i=1 ED
[
Erri(f̂i,λ)

]
. Therefore, to obtain a bound

on ED
[
Err(f̂C)

]
we need to bound ED

[
Erri(f̂i,λ)

]
, for every i ∈ [m]. Now,

to control ED
[
Erri(f̂i,λ)

]
, we bound it as a sum of intermediate error terms3,

and in turn bound these intermediate terms. For this purpose, we define the

3Similar to the usual bias-variance decomposition; or the decomposition in [29, 67]. In

contrast, loosely speaking, [23] analyze the error of f̂C by viewing it as a Standard KRR
with a new kernel K1(x, x′) =

∑m
i=1K(x, x′)1 (x ∈ Ci)1 (x′ ∈ Ci)
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following estimates (for each i ∈ [m]):

For any λ ≥ 0, fi,λ = arg min
f∈H

E
[
(y − f(x))2 |x ∈ Ci

]
+ λ ‖f‖2

H (3.7)

fi,λ = arg min
f∈H

E
[
(y − f(x))2 |x ∈ Ci

]
+ λ ‖f‖2

H (3.8)

f̄i,λ = ED[f̂i,λ] (3.9)

fi,λ and fi,λ are the optimal population KRR estimates for partition Ci, with

regularization penalties λ and λ respectively. f̄i,λ is the expected value of

the empirical KRR estimate from Eq. (3.4), with the expectation taken over

the samples D. Note that there is no source of randomness in all of the

above quantities, whereas f̂i,λ is a random quantity due to its dependence on

the random samples D. Now, based on the above estimates, we define the

following error terms:

Definition 2. For any λ > 0 and λ ∈ [0, λ], we define

Approximation Error : Approxi(λ) = E
[
(f ∗(x)− fi,λ(x))2

1 (x ∈ Ci)
]

(3.10)

Regularization Error : Regi(λ, λ) = E
[
(fi,λ(x)− fi,λ(x))2

1 (x ∈ Ci)
]

(3.11)

Bias : Biasi(λ, n) = E
[
(fi,λ(x)− f̄i,λ(x))2

1 (x ∈ Ci)
]

(3.12)

Variance : Vari(λ,D) = E
[
(f̄i,λ(x)− f̂i,λ(x))2

1 (x ∈ Ci)
]

(3.13)

The intent of fi,λ is to correspond to the best kernel function that

approximates f ∗ in the partition Ci. λ may be viewed as a small regularization

penalty that trades-off the approximation error, Approxi(λ), to
∥∥fi,λ∥∥H (which
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influences other terms in Definition 2). Ideally, if the unknown function f ∗

lies in the RKHS space H, a choice of λ = 0 would suffice. In this case,

we would have fi,λ = fi,0 = f ∗ — implying zero approximation error i.e.

Approxi(λ) = Approxi(0) = 0, and bounded ‖fi,λ‖H(= ‖f ∗‖H). The following

lemma describes the decomposition of ED
[
Erri(f̂i,λ)

]
.

Lemma 3.1 (Error Decomposition). For each partition i ∈ [m], the error

ED
[
Erri(f̂i,λ)

]
decomposes as (for any λ ∈ [0, λ]):

ED
[
Erri(f̂i,λ)

]
≤ 2

[
Approxi(λ) + 2Regi(λ, λ) + 2Biasi(λ, n) + 2ED [Vari(λ,D)]

]
(3.14)

Thus, the overall error ED
[
Err(f̂C)

]
decomposes as (for any λ ∈ [0, λ]):

ED
[
Err(f̂C)

]
≤ 2

[
m∑
i=1

Approxi(λ) + 2
m∑
i=1

Regi(λ, λ) + 2
m∑
i=1

Biasi(λ, n) + 2
m∑
i=1

ED [Vari(λ,D)]

]
(3.15)

In the above decomposition we have considered the same choice of λ

(and λ) for all partitions, a similar decomposition would hold even if we were

to choose a different λ (and λ) for each partition.

To summarize, in Lemma 3.1, we have decomposed the overall error of

our estimator, ED
[
Err(f̂C)

]
, as a sum of errors over each partition, which have

further been broken into four components: Approximation, Regularization,

Bias and Variance. The rest of this section deals with bounding these terms.

First, we require certain assumptions on the partitions. These are provided

in Section 3.4.1. Then, Section 3.4.2 discusses the bounds on the component

terms, for any partition.

41



3.4.1 Assumptions

In this section, we state three assumptions needed to bound the terms in

Lemma 3.1. It may be useful at this point to recall partition-specific definitions

from Section 3.2. We also remark that two of our assumptions are fairly

standard (Assumption 3.1 and Assumption 3.2), and analogous versions have

appeared before [23, 29, 67]. The last assumption, Assumption 3.3, is novel.

However, we have validated it extensively on both real and synthetic data sets

(see Section 3.6).

Now, our first assumption concerns the existence of higher-order mo-

ments of the eigenfunctions, vij.

Assumption 3.1 (Eigenfunction moments). Let {λij, vij}∞j=1 denote the eigenvalue-

eigenfunction pairs for the covariance operator Σi. Then, ∀i ∈ [m], ∀j s.t.

λij 6= 0, and for some constant k ≥ 2, we assume E
[(
vij(x)2

1 (x ∈ Ci) /λij
)2k
]
≤

ak1, where a1 is a constant.

Assumption 3.1 requires sufficiently many higher moments of
(
vij(x)2

1 (x ∈ Ci) /λij
)

to exist. This assumption may also be interpreted as requiring partition-wise

sub-Gaussian behaviour (up to 2k moments) in the RKHS space, given its

primary application to the bounds (see Appendix B.2 for more details). Note

that this assumption is similar to [67, Assumption A], but applied to each

partition.

Our next assumption concerns the approximation variable (f ∗(x) −

fi,λ(x)), requiring its fourth moment to be bounded.
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Assumption 3.2 (Finite Approximation). ∀i ∈ [m], and any λ ≥ 0, we as-

sume there exists a constant Ai(λ) ≥ 0 such that E
[
(f ∗(x)− fi,λ(x))4 |x ∈ Ci

]
≤

Ai(λ)4, where fi,λ is the solution of the optimization problem in Eq. 3.7.

While the above assumption is stated for any λ, we really only care

about the actual λ used in Eq. 3.14. For example, if f ∗ ∈ H, then as noted

earlier, a choice of λ = 0 suffices — and in this case, Assumption 3.2 trivially

holds with Ai(λ) = 0 at λ = 0, since fi,λ = f ∗ at λ = 0.

Our final assumption enforces that the sum of effective dimensionality

over all the partitions be bounded in terms of the overall effective dimen-

sionality. We define the goodness measure of a partition {C1, . . . , Cm} as:

g(λ) :=
∑m
i=1 Si(λpi)

S(λ)
. Now, we have the following assumption.

Assumption 3.3 (Goodness of Partition). Let λ > 0 be the regularization

penalty in Eq. (3.4), for any i ∈ [m]. Then, we require: g(λ) = O(1).

In Section 3.5, we show that if we have g(λ) = O(1) for a λ decaying

suitably in terms of n, the DC-estimator can achieve optimal minimax rates.

In other words, if the partitioning preserves the overall effective dimensional-

ity, then there is no loss in the generalization error. We validate the above

assumption (at suitable λ) by estimating g(λ) on real and synthetic data sets

(see Section 3.6). g(λ) may be viewed as a surrogate for the suitability of a

partition for the DC-estimator, and can help guide the choice of partition.
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3.4.2 Bounds on Regi, Biasi and Vari

We can now provide bounds on the terms Regi(λ, λ), Biasi(λ, n), ED [Vari(λ,D)],

occurring in Lemma 3.1, for any partition i ∈ [m]. In the interest of space, we

refer the reader to Lemma B.1 in Appendix B, as well as the discussion there.

In the next section, we use the bounds derived in these Lemmas to obtain

overall generalization rates for specific kernels.

3.5 Bounds under Specific Cases

In this section, using the bounds on regularization, bias and variance

(stated in Lemma B.1), we instantiate the overall error bounds for two different

kernel classes. We do this under the assumption that f ∗ ∈ H. When f ∗ /∈ H,

we provide an oracle inequality for the error term and contrast this with a

similar inequality derived in [67]. Throughout this section, we assume that

the conditions of Lemma B.1.

3.5.1 f ∗ ∈ H — Zero approximation error

As mentioned earlier, in this case a choice of λ = 0 suffices. With λ = 0,

we have fi,λ = f ∗ (from Eq. (3.7)). Thus, Approxi(λ) = 0 at λ = 0. Also,

Assumption 3.2 trivially holds with Ai(λ) = 0 at λ = 0. Now, we provide

overall generalization bounds for two kernel classes. We consider kernels with

a finite rank — examples include the linear and polynomial kernels, and we

consider kernels with exponentially decaying eigenvalues — an example here is

the Gaussian kernel. An additional result for kernels with polynomial decaying
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eigenvalues — of which sobolev kernels are an example — can be found in

Appendix B.3.

Theorem 3.1 (Finite Rank Kernels). Let f ∗ ∈ H and suppose kernel K has
a finite rank r. Let m denote the number of partitions. Then, the overall error
for f̂C is:

ED
[
Err(f̂C)

]
= O

(
λ ‖f∗‖2H +

σ2

n
g(λ)S(λ) +m

(
r2 log r

n

)k/2(
‖f∗‖2H +

σ2

λ

))
(3.16)

Now, if m = O
(√

n(k−4)

(r2 log r)k

)
and Assumption 3.3 holds at λ = r/n, then f̂C

achieves the optimal rate: ED
[
Err(f̂C)

]
= O (r/n) at λ = r/n.

Theorem 3.2 (Kernels with exponential eigenvalue decay). Let f ∗ ∈ H and
suppose kernel K has eigenvalues that decay as: λj ≤ c1 exp(−c2j

2) (∀j, and
constants c1, c2 > 0). Let m denote the number of partitions. Then, the overall

error for f̂C is:

ED
[
Err(f̂C)

]
= O

(
λ ‖f∗‖2H +

σ2

n
g(λ)S(λ) +m

(
log n(log log n)

n

)k/2(
‖f∗‖2H +

σ2

λ

))
(3.17)

Now, if m = O
(√

n(k−4)

(logn log logn)k

)
and Assumption 3.3 holds at λ = 1/n, then

f̂C achieves the optimal rate: ED
[
Err(f̂C)

]
= O

(√
log n/n

)
at λ = 1/n.

Note that the requirement of an upper-limit on m in the above theorems

is only meaningful for a sufficiently large k, in particular k ≥ 4. In other words,

we would need at least 4 moments of the quantity in Assumption 3.1 to exist.

If this is true, and if Assumption 3.3 holds, then Theorem 3.1 and Theorem 3.2

guarantee the rates ED
[
Err(f̂C)

]
= O (r/n) and ED

[
Err(f̂C)

]
= O(

√
log n/n)

— both of which are minimax optimal in their respective settings [47, 67].
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3.5.2 f ∗ /∈ H — With approximation error

When f ∗ /∈ H, we may not have Approxi(λ) = 0 for any λ > 0. At

λ = 0, though we will always have Approxi(λ) = 0, fi,λ may not be bounded

(in other words, no element in H would achieve this approximation). One

case where we still have Approxi(λ) = 0 at λ = 0, while having fi,λ to be

bounded, is if f ∗ is a piece-wise kernel function over our chosen partitions

i.e. f ∗(x) = f ∗i (x) if x ∈ Ci, with f ∗i ∈ H. The bounds here would then

be analogous to the previous section. In general, however, without enforcing

further assumptions on f ∗, it is hard to give meaningful bounds on Approxi(·).

While we can still proceed to obtain expressions for the regularization, bias and

variance terms for ED
[
Err(f̂C)

]
, in this scenario it may be more instructive to

compare our bounds with the bounds for the averaging estimator in [67]. Let

us denote this estimator as f̂avg. To compute f̂avg, the n samples are randomly

split into m groups, and f̂avg is simply the average of the KRR estimates over

all groups. In this case, we have from [67] (for any λ ∈ [0, λ]):

ED
[
Err(f̂avg)

]
≤ 2

(
Approx(λ) + E(n,m, λ, λ)

)
(3.18)

where Approx(λ) corresponds to the overall approximation error and E(R, n,m, λ)

is the residual error. In particular, Approx(λ) = E [(f ∗(x)− fλ(x))2] with fλ

being the overall population KRR estimate:

fλ = arg min
f∈H

E
[
(f ∗(x)− f(x))2

]
+ λ ‖f‖2

H (3.19)

Also, [67] establish the scaling: E(N,m, λ, λ) = O
(
λ ‖fλ‖

2
H

+ S(λ)
n

)
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In contrast, for our DC-estimator, with a (potentially) different λi for

each i ∈ [m], we get (similar to Eq. (3.15)):

ED
[
Err(f̂C)

]
≤ 2

(
m∑
i=1

Approxi(λi) + EC

)
(3.20)

where we let EC = 2
(∑m

i=1 Regi(λi, λ) +
∑m

i=1 Biasi(λ, n) +
∑m

i=1 ED [Vari(λ,D)]
)
.

Before comparing Eq. 3.18 with Eq. 3.20, we require an additional

definition. For any partition Ci, i ∈ [m], let us define: ApproxErrori(fλ) =

E [(f ∗(x)− fλ(x))2
1 (x ∈ Ci)], i.e. the error incurred by the global estimate

fλ (Eq. (3.19)) in the ith partition. Note that,
∑m

i=1 ApproxErrori(fλ) =

Approx(λ). To avoid confusion, we emphasize the distinction between ApproxErrori(fλ)

and Approxi(λi) (from Definition 2). While the former is the local error (in

the ith partition) incurred by the solution of a global KRR problem with reg-

ularization λ, the latter is the local error incurred by the solution of a local

KRR problem with regularization λi (as defined in Eq (3.10)).

We now have the following theorem:

Theorem 3.3. Consider any λ > 0. Let fλ be the solution of Eq. (3.19).

Then, ∃λ1, . . . , λm with λi ∈ [0, λ], i ∈ [m], such that,

Approxi(λi) ≤ ApproxErrori(fλ) and,
∥∥fi,λi∥∥H = O

(
‖fλ‖H +

√
ApproxErrori(fλ)

(λpi)

)
(3.21)

Thus:
∑m

i=1 Approxi(λi) ≤ Approx(λ). Moreover, if Approx(λ) = O
(
λ ‖fλ‖

2
H

)
,

and Assumption 3.1 holds, Assumption 3.2 holds (∀λi) and Assumption 3.3

holds then: EC = O
(
λ ‖fλ‖

2
H

+ σ2S(λ)
n

)
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The above theorem shows that the approximation error term in

each partition of our estimator in ED
[
Err(f̂C)

]
is lower than its counterpart

in ED
[
Err(f̂avg)

]
. Consequently, the overall approximation term is also lower.

On the other hand, under suitable restrictions, the residual estimation error

terms can be of the same order. Intuitively, this makes sense since by parti-

tioning the space, we are fitting piece-wise kernel functions, as opposed to just

a single kernel function in the averaging case. We demonstrate this through

experiments in the next section.

3.6 Experiments

(a) Piece-wise constant (b) Piece-wise Gaussian (c) Sine function

Figure 3.1: Plots of functions obtained via Whole-KRR and DC-KRR (with 3
partitions)

In this section, we present experimental results of our proposed method

on both real and toy data sets. For comparison, we tested our DC-estimator

(DC-KRR) against the random splitting approach of [67](Random-KRR), and

Kernel Ridge Regression on the entire training set (Whole-KRR).

Toy Data sets: We performed experiments on 3 toy data sets in
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(a) Piece-wise constant (b) Piece-wise Gaussian (c) Sine function

Figure 3.2: Plots of Test RMSE vs. Number of partitions on Three Toy data
sets

Table 3.1: Data set statistics for real data sets used in our experiments. γ was
chosen using cross-validation on the entire data set, or a sub-sample of size
10, 000 for larger data sets.

Data set # training samples # testing samples # features γ

house 404 102 13 10−4

air 1,202 301 5 10−3

cpusmall 6,553 1,639 12 10−1

Pole 12,000 3,000 26 1

CT Slice 42,800 10,700 385 10−2

Road 347,899 86,974 3 0.1

Fig 3.1. In each case, the covariate x was generated from a mixture of 3

Gaussians: x ∼ 1
3
N(µ1, σ) + 1

3
N(µ2, σ) + 1

3
N(µ3, σ). For the first two toy

examples, (µ1 = 0.5, µ2 = 1.5, µ3 = 2.5) and σ = 0.2, and for the third one,

(µ1 = π/2, µ2 = 3π/2, µ3 = 3π) and σ = 1. The response y is y = f ∗(x) + η,

for different choices of f ∗, and with η ∼ N(0, 0.05). For each data set, we

generated a training set of size 600, and a test set of size 100.

We chose f ∗ as: (i) a piece-wise constant function, f ∗(x) = 1 (x ≤ 1) +
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(a) house (b) air (c) cpusmall

(d) Pole (e) CT slice (f) Road

Figure 3.3: Test error vs. training size on real data. m is the number of
partitions, and DC-KRR uses k-means clustering. n is the number of training
data points, and d is their dimension

1.5 × 1 (1 < x < 2) + 2 × 1 (x ≥ 2), in Fig 3.1a, (ii) a piece-wise Gaussian

kernel function, f ∗(x) = exp(−γ(x− 0.5)2)× 1 (x ≤ 1) + exp(−γ(x− 1.5)2)×

1 (1 < x < 2) + exp(−γ(x− 2.5)2)× 1 (x ≥ 2), with γ = 0.1, in Fig 3.1b, and

(iii) a sine function, f ∗(x) = sin(x), in Fig 3.1c. To obtain KRR estimate, we

used a Gaussian kernel (K(x, y) = exp(−γ(x− y)2)) with γ = 0.1 for the first

two toy data sets, and degree 2 polynomial kernel (K(x, y) = (1 + xy)2) for

the third one. When running DC-KRR, we obtained the partition of the data

points using k-means. A regularization penalty of λ = 1/n was used, where

n = Total number of training points.
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Fig 3.1 shows a comparison of the functions obtained using DC-KRR

(run with 3 partitions) and Whole-KRR. We see that DC-KRR could approx-

imate the true underlying function better than Whole-KRR, while still being

computationally more efficient. For Fig 3.2, we varied the number of partitions,

and plotted the Test-RMSE for DC-KRR, Whole-KRR and Random-KRR on

toy data sets. We observe that while Random-KRR had a similar performance

to Whole-KRR, DC-KRR achieved lower error than both. This is due to the

lower approximation error of piece-wise estimates.

Real Data sets: We performed experiments on 6 real data sets from

the UCI repository [36]. Data sets statistics are presented in Table 3.1. The

data was normalized to have standard deviation 1. In all cases, we utilized

a Gaussian kernel with kernel parameter γ chosen using cross-validation, as

shown in Table 3.1. We varied the number of partitions, m, and the number

of training points, n. When running DC-KRR, the partitions were determined

using clustering, and we tested with k-means and Kernel k-means. Kernel

k-means was run on a sub-sampled set of points for larger data sets. The

(a) Piece-wise constant (b) Piece-wise Gaussian (c) Sine

Figure 3.4: Plots of g(λ) vs. Number of partitions on synthetic data sets
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regularization penalty for KRR was chosen as λ = 1/n. The results of these

experiments are presented in Table 3.2 and Fig 3.3.

In all cases, DC-KRR achieved lower test error than Random-KRR,

while being comparable to Whole-KRR. Moreover, the training time for DC-

KRR, when running via k-means, was similar to Random-KRR (due to the

small overhead of clustering), but much faster than Whole-KRR. Interestingly,

in two cases (Fig 3.3a and Fig3.3b), we found that DC-KRR also achieved lower

test error than Whole-KRR. This may be a consequence of lower approxima-

tion error due to piece-wise estimates, as also alluded to earlier.

Testing Goodness of Partitioning: We also estimated g(λ) (defined

for Assumption 3.3) vs. a varying number of partitions, on both our real and

toy data sets (shown in Fig 3.4 and Fig 3.5 respectively) to verify the validity

of Assumption 3.3.

To estimate S(λ) and Si(λpi), i ∈ [m] (which comprise g(λ)), we used an

SVD to compute the eigenvalues of the kernel matrix on the training samples

(respectively, the kernel matrix of the training samples in partition i) and

normalized this with n, the training size (respectively, ni, the training size in

partition i). In case of larger data sets, we did this on a sub-sampled version

of the data set. It is known that the eigenvalues of KD/n, with KD being the

kernel matrix on randomly sampled points D, converge to the eigenvalues of

the covariance in the associated RKHS [50]. Finally, we set λ = 1/n, the same

as in our earlier experiments, with n = total training size/sub-sample size.
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(a) house (b) air (c) cpusmall

(d) Pole (e) CT Slice (f) Road

Figure 3.5: Plots of g(λ) vs. number of partitions on real data sets

On real data sets, we found that while g(λ) increases as the number of

partitions increases, it continues to be a constant even for a large number of

partitions in several cases, thereby justifying Assumption 3.3. On synthetic

data sets, it seemed to grow at a somewhat faster rate. However, this could

be attributed to lesser clustering structure, since the true number of clusters

was only 3 — at which point g(λ) is still a small constant.

Comparison with [23]: We also performed additional empirical com-

parisons between the approach in [23] (denoted as VP-KRR), DC-KRR (with

k-means and kernel k-means) and Random-KRR, on the cpusmall data set

(see Table 3.1). The main algorithmic difference between DC-KRR and VP-
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KRR is that the latter proposes to obtain bounded partitions using a Voronoi

partitioning of the input space, while in DC-KRR we use a clustering algo-

rithm to obtain the partitions. The results of our tests are shown in Table3.3.

We see that DC-KRR(with kernel k-means) is slightly better than VP-KRR

in terms of Test RMSE, but also DC-KRR requires much lesser training time

than VP-KRR. A reason for this is that Voronoi partitioning tends to produce

a very unbalanced clustering. For example, when using Voronoi partitioning

to generate 9 clusters, we found that the first cluster had 6484 data points

out of total 6553 data points in the dataset, and the remaining clusters had

very few data points. Consequently, the training time for the one cluster was

almost as huge as the time it would take to train Whole-KRR.

54



Table 3.2: Test RMSE and Training Time on real data sets used in our ex-
periments. # partitions is only applicable to the Random-KRR and DC-KRR
columns.

Data set # partitions Whole-KRR Random-KRR DC-KRR(kernel k-means) DC-KRR(k-means)

Test RMSE Time(s) Test RMSE Time(s) Test RMSE Time(s) Test RMSE Time(s)

house 4 4.4822 0.08 4.5609 0.02 3.3849 0.18 3.8244 0.06

air 8 4.3537 2.46 4.6604 0.07 4.2577 0.79 4.4782 0.23

cpusmall 8 5.8853 118.98 7.1757 4.04 5.7947 30.86 6.4616 7.86

Pole 16 14.7256 1088.9 21.5768 6.15 15.0005 277.80 15.1167 11.88

CT Slice 32 2.1165 3840.7 10.0318 43.81 3.6100 405.38 2.4302 64.06

Road 256 - - 13.6444 43.48 11.0550 1081.3 8.6358 78.16

Table 3.3: Test RMSE and Training Times on cpusmall for VP-KRR([23]),
Random-KRR and DC-KRR(with k-means and kernel k-means). # parti-
tions is only applicable to the Random-KRR and DC-KRR columns. For
VP-KRR([23]), we choose the radius for obtaining voronoi partitions, r, to be
α times the maximum distance between any two points in the data set, with
α chosen as 0.01, 0.04, 0.07 and 0.12. After we know the number of partitions
for a specific r, we generate the same number of partitions using k-means and
kernel k-means (for DC-KRR), and random partitioning (for Random-KRR).

# partitions 6 9 13 40

Test RMSE Time(s) Test RMSE Time(s) Test RMSE Time(s) Test RMSE Time(s)

VP-KRR 5.8914 129.9600 5.8653 119.9500 6.1331 113.0400 6.3026 49.69

Random-KRR 6.6232 4.49 7.3143 2.2400 7.9986 1.2100 10.1980 0.2500

DC-KRR(k-means) 6.4246 24.72 6.4610 8.6800 6.6415 4.1700 7.2206 0.9400

DC-KRR(kernel k-means) 5.7819 17.0900 5.8338 14.4700 5.8069 13.00 6.01 12.09
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Chapter 4

Gradient Coding: Avoiding stragglers in

distributed Synchronous Gradient Descent3

4.1 Introduction

In this chapter, we propose a novel coding theoretic framework for miti-

gating stragglers in distributed learning. The central idea can be seen through

the simple example of Figure 1: Consider synchronous Gradient Descent (GD)

on three workers (W1,W2,W3). The baseline vanilla system is shown in the left

figure and operates as follows: The three workers have different partitions of

the labeled data stored locally (D1,D2,D3) and all share the current model.

Worker 1 computes the gradient of the model on examples in partition D1,

denoted by g1. Similarly, Workers 2 and 3 compute g2 and g3. The three

gradient vectors are then communicated to a central node (called the mas-

ter/aggregator) A which computes the full gradient by summing these vectors

g1 + g2 + g3 and updates the model with a gradient step. The new model

is then sent to the workers and the system moves to the next round (where

the same examples or other labeled examples, say D4,D5,D6, will be used in

the same way). The problem is that sometimes worker nodes can be strag-

3This chapter is based on [57]. The author of this work was the first author and primary
contributor to [57].
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A

W1 W3W2

g1 g2 g3

g1 + g2 + g3

D1 D2 D3

(a) Naive synchronous gradient
descent

A

W1 W3W2

g1 + g2 + g3   

D1 D2 D3

D1D2 D3

g1/2 + g2 g2 - g3 g1/2 + g3

(from any 2)

(b) Gradient coding: The vector
g1 + g2 + g3 is in the span of any
two out of the vectors g1/2 + g2,
g2 − g3 and g1/2 + g3.

Figure 4.1: The idea of Gradient Coding.

glers [18, 27, 32] i.e. delay significantly in computing and communicating gra-

dient vectors to the master. This is especially pronounced for cheaper virtual

machines in the cloud. For example on t2.micro machines on Amazon EC2,

as can be seen in Figure 4.2: some machines can be 5× slower in computing

and communicating gradients compared to typical performance.

First, we discuss one way to resolve this problem if we replicate some

data across machines by considering the placement in Fig.1 (b) but without

coding. As can be seen, in Fig. 1 (b) each example is replicated two times

using a specific placement policy. Each worker is assigned to compute two

gradients on the two examples they have for this round. For example, W1

will compute vectors g1 and g2. Now let’s assume that W3 is the straggler.

If we use control messages, W1,W2 can notify the master A that they are
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done. Subsequently, if feedback is used, the master can ask W1 to send g1

and g2 and W2 to send g3. These feedback control messages can be much

smaller than the actual gradient vectors but are still a system complication

that can cause delays. However, feedback makes it possible for a centralized

node to coordinate the workers, thereby avoiding stragglers. One can also

reduce network communication further by simply asking W1 to send the sum

of two gradient vectors g1 + g2 instead of sending both. The master can

then create the global gradient on this batch by summing these two vectors.

Unfortunately, which linear combination must be sent depends on who is the

straggler: If W2 was the straggler then W1 should be sending g2 and W3 sending

g1 + g3 so that their sum is the global gradient g1 + g2 + g3.

In this work we show that feedback and coordination is not necessary:

every worker can send a single linear combination of gradient vectors without

knowing who the straggler will be. The main coding theoretic question we

investigate is how to design these linear combinations so that any two (or any

fixed number generally) contain the g1 + g2 + g3 vector in their span. In our

example, in Fig. 4.1b, W1 sends 1
2
g1+g2, W2 sends g2−g3 andW3 sends 1

2
g1+g3.

The reader can verify that A can obtain the vector g1 + g2 + g3 from any two

out of these three vectors. For instance, g1 + g2 + g3 = 2
(

1
2
g1 + g2

)
− (g2 − g3).

We call this idea gradient coding.

We consider this problem in the general setting of n machines and any

s stragglers. We first establish a lower bound: to compute gradients on all

the data in the presence of any s stragglers, each partition must be replicated
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s + 1 times across machines. We propose two placement and gradient coding

schemes that match this optimal s+ 1 replication factor. We further consider

a partial straggler setting, wherein we assume that a straggler can compute

gradients at a fraction of the speed of others, and show how our scheme can

be adapted to such scenarios. All proofs for this chapter can be found in

Appendix D.

We also compare our scheme with the popular ignoring the stragglers

approach [11]: simply doing a gradient step when most workers are done. We

see that while ignoring the stragglers is faster, this loses some data which can

hurt the generalization error. This can be especially pronounced in supervised

learning with unbalanced labels or heavily unbalanced features since a few

examples may contain critical, previously unseen information.

4.1.1 The Effects of Stragglers

In Figure 4.2, we show the average time required for 50 t2.micro Ama-

zon EC2 instances to communicate gradients to a single master machine (a

c3.8xlarge instance). We observe that a few worker machines incurred a

communication delay of up to 5× the typical behavior. Interestingly, through-

out the timescale of our experiments (a few hours), the straggling behavior

was consistent in the same machines.

We have also experimented extensively with other Amazon EC2 in-

stances: Our finding is that cheaper instance types have significantly higher

variability in performance. This is especially true for t2 type instance which
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Figure 4.2: Average communication times, measure over 100 rounds, for a
vector of dimension p = 500000 using n = 50 t2.micro worker machines (and
a c3.8xlarge master machine). Error bars indicate one standard deviation.

on AWS are described as having Burstable Performance. Fortunately, these

machines have very low cost.

The choices of the number and type of workers used in training big

models ultimately depends on total cost and time needed until deployment.

The main message of this work is that going for very low-cost instances and

using coding to mitigate stragglers, may be a sensible choice for some learning

problems.
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4.1.2 Related Work

The slow machine problem is the Achilles heel of many distributed

learning systems that run in modern cloud environments. Recognizing that,

some recent work has advocated asynchronous approaches [27, 32, 41] to learn-

ing. While asynchronous updates are a valid way to avoid slow machines, they

do give up many other desirable properties, including faster convergence rates,

amenability to analysis, and ease of reproducibility and debugging.

Attacking the straggling problem in synchronous machine learning al-

gorithms has surprisingly not received much attention in the literature. There

do exist general systems solutions such as speculative execution [64] but we

believe that approaches tailored to machine learning can be vastly more effi-

cient. In [11] the authors use synchronous minibatch SGD and request a small

number of additional worker machines so that they have an adequate mini-

batch size even when some machines are slow. However, this approach does

not handle well machines that are consistently slow and the data on those

machines might never participate in training. In [42] the authors describe an

approach for dealing with failed machines by approximating the loss function

in the failed partitions with a linear approximation at the last iterate before

they failed. Since the linear approximation is only valid at a small neigh-

borhood of the model parameters, this approach can only work if failed data

partitions are restored fairly quickly.

The work of [31] is the closest in spirit to our work, using coding the-

ory and treating stragglers as erasures in the transmission of the computed
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results. However, we focus on codes for recovering the batch gradient of any

loss function while [31] and the more recent work of [21] describe techniques

for mitigating stragglers in two different distributed applications: data shuf-

fling and matrix multiplication. We also mention [34], which investigates a

generalized view of the coding ideas in [31], showing that their solution is a

single operating point in a general scheme of trading off latency of computa-

tion to the load of communication. Further closely related work has shown

how coding can be used for distributed MapReduce, as well as a similar com-

munication and computation tradeoff [33, 35]. All these prior works develop

novel coding techniques, but do not code across gradient vectors in the way

we are proposing in our work.

4.2 Notation and Preliminaries

Given data D = {(x1, y1), . . . , (xd, yd)}, with each tuple (x, y) ∈ Rp×R,

several machine learning tasks aim to solve the following problem:

β∗ = arg min
β∈Rp

d∑
i=1

` (β;xi, yi) + λR(β) (4.1)

where `(·) is a task-specific loss function, and R(·) is a regularization func-

tion. Typically, this optimization problem can be solved using gradient-based

approaches. Let g :=
∑d

i=1∇`(β(t);xi, yi) be the gradient of the loss at the

current model β(t). Then the updates to the model are of the form:

β(t+1) = hR
(
β(t), g

)
(4.2)
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where hR is a gradient-based optimizer, which also depends on R(·). Several

methods such as gradient descent, accelerated gradient, conditional gradient

(Frank-Wolfe), proximal methods, LBFGS, and bundle methods fit in this

framework. However, if the number of samples, d, is large, a computational

bottleneck in the above update step is the computation of the gradient, g,

whose computation can be distributed.

Notation: Throughout this chapter, we let d denote the number of

samples, n denote the number of workers, k denote the number of data par-

titions, and s denote the number of stragglers/failures. The n workers are

denoted as W1,W2, . . . ,Wn. The partial gradients over k data partitions are

denoted as g1, g2, . . . , gk. The ith row of some matrices A or B is denoted as

ai or bi respectively. For any vector x ∈ Rn, supp(x) denotes its support i.e.

supp(x) = {i |xi 6= 0}, and ‖x‖0 denotes its `0-norm i.e. the cardinality of

the support. 1p×q and 0p×q denote all 1s and all 0s matrices respectively, with

dimension p× q. Finally, for any r ∈ N, [r] denotes the set {1, . . . , r}.

4.2.1 The General Setup

We can generalize the scheme in Figure 4.1b to n workers and k data

partitions by setting up a system of linear equations:

AB = 1f×k (4.3)

where f denotes the number of combinations of surviving workers/non-stragglers,

1f×k is the all 1s matrix of dimension f × k, and we have matrices A ∈ Rf×n,
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B ∈ Rn×k.

We associate the ith row of B, bi, with the ith worker, Wi. The support

of bi, supp(bi), corresponds to the data partitions that worker Wi has access

to, and the entries of bi encode a linear combination over their gradients that

worker Wi transmits. Let ḡ ∈ Rk×d be a matrix with each row being the partial

gradient of a data partition i.e.

ḡ = [g1, g2, . . . , gk]
T .

Then, worker Wi transmits biḡ. Note that to transmit biḡ, Wi only needs to

compute the partial gradients on the partitions in supp(bi). Now, each row of

A is associated with a specific failure/straggler scenario, to which tolerance is

desired. In particular, any row ai, with support supp(ai), corresponds to the

scenario where the worker indices in supp(ai) are alive/non-stragglers. Also,

by the construction in Eq. (4.3), we have:

aiBḡ = [1, 1, . . . , 1]ḡ =

(
k∑
j=1

gj

)T

and, (4.4)

aiBḡ =
∑

k∈supp(ai)

ai(k)(bkḡ) (4.5)

where ai(k) denotes the kth element of the row ai. Thus, the entries of ai

encode a linear combination which, when taken over the transmitted gradients

of the alive/non-straggler workers, {bkḡ}k∈supp(ai), would yield the full gradient.

Going back to the example in Fig. 4.1b, the corresponding A and B
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matrices under the above generalization are:

A =


0 1 2

1 0 1

2 −1 0

 , and B =


1/2 1 0

0 1 −1

1/2 0 1

 (4.6)

with f = 3, n = 3, k = 3. It is easy to check that AB = 13×3. Also, since

every row of A here has exactly one zero, we say that this scheme is robust to

any one straggler.

In general, we shall seek schemes, through the construction of (A,B),

which are robust to any s stragglers.

The rest of this chapter is organized as follows. In Section 4.3 we pro-

vide two schemes applicable to any number of workers n, under the assumption

that stragglers can be arbitrarily slow to the extent of total failure. In Section

4.4, we relax this assumption to the case of worker slowdown (with known

slowdown factor), instead of failure, and show how our constructions can be

appended to be more effective. Finally, in Section 4.5 we present results of

empirical tests using our proposed distribution schemes on Amazon EC2.

4.3 Full Stragglers

In this section, we consider schemes robust to any s stragglers, given n

workers (with s < n). We assume that any straggler is (what we call) a full

straggler i.e. it can be arbitrarily slow to the extent of complete failure. We

show how to construct the matrices A and B, with AB = 1, such that the

scheme (A,B) is robust to any s full stragglers.
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Consider any such scheme (A,B). Since every row of A represents a

set of non-straggler workers, all possible sets over [n] of size (n − s) must be

supports in the rows of A. Thus f =
(
n
n−s

)
=
(
n
s

)
i.e. the total number of

failure scenarios is the number of ways to choose s stragglers out of n workers.

Now, since each row of A represents a linear span over some rows of B, and

since we require AB = 1, this leads us to the following condition on B:

Condition 1 (B-Span). Consider any scheme (A,B) robust to any s strag-

glers, given n workers (with s < n). Then we require that for every subset

I ⊆ [n], |I| = n− s:

11×k ∈ span{bi | i ∈ I} (4.7)

where span{·} is the span of vectors.

The B-Span condition above ensures that the all 1s vector lies in the

span of any n − s rows of B. This is of course necessary. However, it is also

sufficient. In particular, given a B satisfying Condition 1, we can construct

A such that AB = 1, and A has the support structure discussed above. The

construction of A is described in Algorithm 4.1 (in MATLAB syntax), and we

have the following lemma.

Lemma 4.1. Consider B ∈ Rn×k satisfying Condition 1 for some s < n.

Then, Algorithm 4.1, with input B and s, yields an A ∈ R(ns)×n such that

AB = 1(ns)×n
and the scheme (A,B) is robust to any s full stragglers.

Based on Lemma 4.1, to obtain a scheme (A,B) robust to any s strag-

glers, we only need to furnish a B satisfying Condition 1. A trivial B that
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Algorithm 4.1 Algorithm to compute A

Input : B satisfying Condition 1, s(< n)
Output: A such that AB = 1(ns)×n

f = binom(n, s);
A = zeros(f, n);
foreach I ⊆ [n] s.t. |I| = (n− s) do
a = zeros(1, k);
x = ones(1, k)/B(I, :);
a(I) = x;
A = [A; a];

end

works is B = 1n×k, the all ones matrix. However, this is wasteful since it im-

plies that each worker gets all the partitions and computes the full gradient.

Our goal is to construct B satisfying Condition 1 while also being as sparse

as possible in each row. In this regard, we have the following theorem, which

gives a lower bound on the number of non-zeros in any row of B.

Theorem 4.1 (Lower Bound on B’s density). Consider any scheme (A,B)

robust to any s stragglers, given n workers (with s < n) and k partitions.

Then, if all rows of B have the same number of non-zeros, we must have:

‖bi‖0 ≥
k
n
(s+ 1) for any i ∈ [n].

Theorem 4.1 implies that any scheme (A,B) that assigns the same

amount of data to all the workers must assign at least s+1
n

fraction of the data

to each worker. Since this fraction is independent of k, for the remainder of

this chapter we shall assume that k = n i.e. the number of partitions is the

same as the number of workers. In this case, we want B to be a square matrix
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satisfying Condition 1, with each row having at least (s+ 1) non-zeros. In the

sequel, we demonstrate two constructions for B which satisfy Condition 1 and

achieve the density lower bound.

4.3.1 Fractional Repetition Scheme

In this section, we provide a construction for B that works by replicat-

ing the task done by a subset of the workers. We note that this construction is

only applicable when the number of workers, n, is a multiple of (s+1), where s

is the number of stragglers we seek tolerance to. In this case, the construction

is as follows:

• We divide the n workers into (s+ 1) groups of size (n/(s+ 1)).

• In each group, we divide all the data equally and disjointly, assigning

(s+ 1) partitions to each worker

• All the groups are replicas of each other

• When finished computing, every worker transmits the sum of its partial

gradients

Fig. 4.3 shows an instance of the above construction for n = 6, s = 2. A

general description of B constructed in this way (denoted as Bfrac) is shown

in Eq. (4.9). Each group of workers in this scheme can be denoted by a block
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Figure 4.3: Fractional Repetition Scheme for n = 6, s = 2

matrix Bblock(n, s) ∈ R
n
s+1
×n. We define:

Bblock(n, s) =


11×(s+1) 01×(s+1) · · · · · · 01×(s+1)

01×(s+1) 11×(s+1) · · · · · · 01×(s+1)

...
...

. . .
...

01×(s+1) 01×(s+1) · · · · · · 11×(s+1)


n
s+1
×n

(4.8)

Thus, the first worker in the group gets the first (s+ 1) partitions, the second

worker gets the second (s+ 1) partitions, and so on. Then, B is simply (s+ 1)

replicated copies of Bblock(n, s):

B = Bfrac =


B

(1)

block

B
(2)

block
...

B
(s+1)

block


n×n

(4.9)

where for each t ∈ {1, . . . , s+ 1}, B(t)

block = Bblock(n, s).

It is easy to see that this construction can yield robustness to any s

stragglers. Since any particular partition of data is replicated over (s + 1)
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workers, any s stragglers would leave at least one non-straggler worker to

process it. We have the following theorem.

Theorem 4.2. Consider Bfrac constructed as in Eq. (4.9), for a given number

of workers n and stragglers s(< n). Then, Bfrac satisfies the B-Span condition

(Condition 1). Consequently, the scheme (A,Bfrac), with A constructed using

Algorithm 4.1, is robust to any s stragglers.

The construction of Bfrac matches the density lower bound in Theo-

rem 4.1 and, the above theorem shows that the scheme (A,Bfrac), with A

constructed from Algorithm 4.1, is robust to s stragglers.

4.3.2 Cyclic Repetition Scheme

In this section we provide an alternate construction for B which also

matches the lower bound in Theorem 4.1 and satisfies Condition 1. However,

in contrast to construction in the previous section, this construction does not

require n to be divisible by (s + 1). Here, instead of assigning disjoint collec-

tions of partitions, we consider a cyclic assignment of (s+ 1) partitions to the

workers. We construct a B = Bcyc with the following support structure:
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supp(Bcyc) =



s+1︷ ︸︸ ︷
? ? · · · ? ? 0 0 · · · 0 0

0 ? ? · · · ? ? 0 · · · 0 0
...

...
...

...
...

...
. . . . . .

...
...

0 0 · · · 0 0 ? ? · · · ? ?
...

...
...

...
...

...
. . . . . .

...
...

? · · · ? ? 0 0 · · · 0 0 ?


n×n

(4.10)

where ? indicates non-zero entries in Bcyc. So, the first row of Bcyc has its first

(s+ 1) entries assigned as non-zero. As we move down the rows, the positions

of the (s + 1) non-zero entries shift one step to the right, and cycle around

until the last row.

Given the support structure in Eq. 4.10, the actual non-zero entries

must be carefully assigned in order to satisfy Condition 1. The basic idea

is to pick every row of Bcyc, with its particular support, to lie in a suitable

subspace S that contains the all ones vector 1n×1. We consider a (n − s)

dimensional subspace, S = {x ∈ Rn |Hx = 0, H ∈ Rs×n} i.e. the null space

of the matrix H, for some H satisfying H1 = 0. Now, to make the rows

of Bcyc lie in S, we require that the null space of H must contain vectors

with all the different supports in Eq. 4.10. This turns out to be equivalent

to requiring that any s columns of H are linearly independent, and is also

referred to as the MDS property in coding theory. We show that a random

choice of H suffices for this, and we are able to construct a Bcyc with the

support structure in Eq. 4.10. Moreover, for any (n − s) rows of Bcyc, we
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show that their linear span also contains 1n×1, thereby satisfying Condition 1.

Algorithm 4.2 describes the construction of Bcyc (in MATLAB syntax) and,

we have the following theorem.

Algorithm 4.2 Algorithm to construct B = Bcyc

Input : n, s(< n)
Output: B ∈ Rn×n with (s+ 1) non-zeros in each row

H = randn(s, n);
H(:, n) = −sum(H(:, 1 : n− 1), 2);
B = zeros(n);
for i = 1 : n do
j = mod(i− 1 : s+ i− 1, n) + 1;
B(i, j) = [1;−H(:, j(2 : s+ 1))\H(:, j(1))];

end

Theorem 4.3. Consider Bcyc constructed using the randomized construction

in Algorithm 4.2, for a given number of workers n and stragglers s(< n).

Then, with probability 1, Bcyc satisfies the B-Span condition (Condition 1).

Consequently, the scheme (A,Bcyc), with A constructed using Algorithm 4.1,

is robust to any s stragglers.

4.4 Partial Stragglers

In this section, we revisit our earlier assumption of full stragglers. Un-

der a full straggler assumption, Theorem 4.1 shows that any non-straggler

worker must incur an (s + 1)-factor overhead in computation, if we want to

attain tolerance to any s stragglers. This may be prohibitively huge in many

situations. One way to mitigate this is by allowing at least some work to be
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n3 = g(N5) + g(N6)

b1 = g(C1)/2 + g(C2)
b2 = g(C2) - g(C3)
b3 = g(C1)/2 + g(C3)

Figure 4.4: Scheme for Partial Stragglers, n = 3, s = 1, α = 2. g(·) represents
the partial gradient.

done also by the straggling workers. Therefore, in this section, we consider a

more plausible scenario of slow workers, but assume a known slowdown factor.

We say that a straggler is an α-partial straggler (with α > 1) if it is at most α

slower than any non-straggler. This means that if a non-straggler completes

a task in time T , an α-partial straggler would require at most αT time to

complete it. Now, we augment our previous schemes (in Section 4.3.1 and

Section 4.3.2) to be robust to any s stragglers, assuming that any straggler is

an α-partial straggler.

Note that our earlier constructions are still applicable: a scheme (A,B),

with B = Bfrac or B = Bcyc, would still provide robustness to s partial

stragglers. However, given that no machine is slower than a factor of α, a

more efficient scheme is possible by exploiting at least some computation on

every machine. Our basic idea is to couple our earlier schemes with a naive

distribution scheme, but on different parts of the data. We split the data into

a naive component, and a coded component. The key is to do the split such
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that whenever an α-partial straggler is done processing its naive partitions, a

non-straggler would be done processing both its naive and coded partitions.

In general, for any (n, s, α), our two-stage scheme works as follows:

• We split the data D into n + n s+1
α−1

equal-sized partitions — of which n

partitions are coded components, and the rest are naive components

• Each worker gets s+1
α−1

naive partitions, distributed disjointly.

• Each worker gets (s + 1) coded partitions, distributed according to an

(A,B) distribution scheme robust to s stragglers (e.g. with B = Bfrac

or B = Bcyc)

• Any worker, Wi, first processes all its naive partitions and sends the sum

of their gradients to the aggregator. It then processes its coded partitions,

and sends a linear combination, as per the (A,B) distribution scheme.

Note that each worker now has to send two partial gradients (instead

of one, as in earlier schemes). However, a speedup gained in processing a

smaller fraction of the data may mitigate this overhead in communication,

since each non-straggler only has to process a s+1
n

(
α
s+α

)
fraction of the data,

as opposed to a s+1
n

fraction in full straggler schemes. Thus, when computation

is the bottleneck, adopting a partial stragglers scheme may not hurt the overall

efficiency. On the other hand, when communication is the bottleneck (and if a

2× overhead is prohibitive), a full straggler scheme may be a better choice even

with its (s+1)-factor overhead in computation for the non-straggler workers.
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Fig. 4.4 illustrates our two-stage strategy for n = 3, s = 1, α = 2. We

see that each non-straggler gets 4/9 = 0.44 fraction of the data, instead of a

2/3 = 0.67 fraction (for e.g. in Fig 4.1b).
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4.5 Experiments
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Figure 4.5: Empirical running times on Amazon EC2 with n = 12 machines for
s = 1 and s = 2 stragglers. In this experiment, the stragglers are artificially
delayed while the other machines run at normal speed. We note that the
partial straggler schemes have much lower data replication, for example with
α = 1.2 we need to only replicate approximately 10% of the data.
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In this section, we present experimental results on Amazon EC2, com-

paring our proposed gradient coding schemes with baseline approaches. We

compare our approaches against: (1) the naive scheme, where the data is

divided uniformly across all workers without replication and the aggregator

waits for all workers to send their gradients, and (2) the ignoring s stragglers

scheme where the data is divided as in the naive scheme, however the aggre-

gator performs an update step after any n − s workers have successfully sent

their gradient.
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Figure 4.6: Avg. Time per iteration on Amazon Employee Access dataset.

4.5.1 Experimental setup

We implemented all methods in python using MPI4py [16], an open

source MPI implementation. Based on the method being considered, each

worker loads a certain number of partitions of the data into memory before

starting the iterations. In iteration t the aggregator sends the latest model

β(t) to all the workers (using Isend()). Each worker receives the model (using
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Figure 4.7: AUC vs Time on Amazon Employee Access dataset. The two pro-
posed methods are FracRep and CycRep compared against the frequently used
approach of Ignoring s stragglers. As can be seen, gradient coding achieves
significantly better generalization error on a true holdout.

Irecv()) and starts a gradient computation. Once finished, it sends its gradi-

ent(s) back to the aggregator. When sufficiently many workers have returned

with their gradients, the aggregator computes the overall gradient, performs a

descent step, and moves on to the next iteration.

Our experiments were performed using two different worker instance

types on Amazon EC2: m1.small and t2.micro — these are very small, very

low-cost EC2 instances. We also observed that our system was often bottle-

necked by the number of incoming connections i.e. all workers trying to talk

to the master concurrently. For that reason, and to mitigate this additional

overhead to some degree, we used a larger master instance of c3.8xlarge in

our experiments.

We ran the various approaches to train logistic regression models, a

well-understood convex problem that is widely used in practice. Moreover,
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Logistic regression models are often expanded by including interaction terms

that are often one-hot encoded for categorical features. This can lead to 100’s

of thousands of parameters (or more) in the trained models. To train the

logistic regression models for using our proposed scheme (or the naive scheme),

we used Nesterov’s Accelerated Gradient descent with a constant learning

rate, where the constant was chosen optimally from a range. Note that other

optimizers such as LBFGS would have also been applicable here since we obtain

the full gradient in our schemes. For the ignoring s stragglers approach, we

used gradient descent with a learning rate of c1/(t + c2) (which is typical for

SGD), where c1 and c2 were also chosen optimally in a range. We did not use

NAG here since it is unstable to noisy gradients. While we do not present any

empirical results, we refer the reader to [20] for a theoretical and empirical

analysis of the effect of noisy gradients in NAG. Thus another advantage of

our schemes over ignoring s stragglers is that the latter cannot be combined

with NAG because errors may quickly accumulate and eventually cause the

method to diverge.

4.5.2 Results

Artificial Dataset: In our first experiment, we solved a logistic re-

gression problem on a artificially generated dataset. We generated a dataset

of d = 554400 samples D = {(x1, y1), . . . , (xd, yd)}, using the model x ∼

0.5 × N(µ1, I) + 0.5 × N(µ2, I) (for random µ1, µ2 ∈ Rp), and y ∼ Ber(κ),

with κ = 1/(exp(2xTβ∗) + 1), where β∗ ∈ Rp is the true regressor. In our
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experiments, we used a model dimension of p = 100, and chose β∗ randomly.

In this experiment, we also artificially added delays to s random workers

in each iteration (using time.sleep()). Figure 4.5 presents the results of our

experiments with s = 1 and s = 2 stragglers, on a cluster of n = 12 m1.small

machines. As expected, the baseline naive scheme that waits for the stragglers

has poorer performance as the delay increases. The Cyclic and Fractional

schemes were designed for one straggler in Figure 4.5a and for two stragglers

in Figure 4.5b. Therefore, we expect that these two schemes would not be

influenced at all by the delay of the stragglers (up to some variance due to

implementation overheads). The partial straggler schemes were designed for

various α. Recall that for partial straggler schemes, α denotes the slowdown

factor.

Real Dataset: Next, we trained a logistic regression model on the

Amazon Employee Access dataset from Kaggle 1. We used d = 26200 training

samples, and a model dimension of p = 241915 (after one-hot encoding with

interaction terms). These experiments were run on n = 10, 20, 30 t2.micro

instances on Amazon EC2.

In Figure 4.7 we show the Generalization AUC of our method (FracRep

and CycRep) versus ignoring s stragglers (IgnoreStragg). As can be seen, Gra-

dient coding achieved significantly better generalization error. We emphasize

that the results in figures 4.6 and 4.7 do not use any artificial straggling, only

1https://www.kaggle.com/c/amazon-employee-access-challenge
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the natural delays introduced by the EC2 cluster.

How is this stark difference possible? When stragglers were ignored

we were, at best, receiving a stochastic gradient (when random machines are

straggling in each iteration). As alluded to earlier, in this case the best we

could do as an optimization algorithm is to run gradient descent as it is robust

to noise. When using gradient coding however, we could retrieve the full

gradient which gave us access to faster optimization algorithms. In Figure 4.7

we used Nesterov’s Accelerated Gradient (NAG).

Another advantage of using full gradients is that we can guarantee that

we are training on the same distribution as the one the training set was drawn

from. This is not true for the approach that ignores stragglers. If a particular

machine is more likely to be a straggler, samples on that machine will likely

be underrepresented in the final model, unless particular countermeasures are

deployed. There may even be inherent reasons why a particular sample will

systematically be excluded when we ignore stragglers. For example, in struc-

tured models such as linear-chain CRFs, the computation of the gradient is

proportional to the length of the sequence. Therefore, extraordinarily long

examples can be ignored very frequently.
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Chapter 5

Conclusion

In this thesis, we have studied three problems that typically invoke low-

dimensional structural assumptions, or distributed approaches, to solve them.

For these problems, we have shown approaches that further account for specific

structural characteristics or computational bottlenecks and thus provide both

statistical and computational advantages over existing algorithms.

For the problem of learning graphs with a few hubs, we have proposed

an estimator based on a sufficiency measure — a quantitative criteria that

measures whether or not the given number of samples suffice to estimate the

neighborhood of a given node. Since the number of samples depends on the

high-degree nodes (among other things), this measure allows us to detect ”high

degree” or ”hub” nodes. Ignoring the estimates for these nodes, and only

using ”non-hub” nodes to reconstruct the whole graph then suffices to estimate

graphs without any ”hub-hub” edges.

For the problem of kernel ridge regression, we have studied a divide-and-

conquer approach to reduce the O(n3) computational complexity of solving a

single KRR problem (where n is the number of samples). Our divide step is

based on a suitable underlying partition of the input space (possibly obtained
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via clustering), and the conquer step simply uses the local estimate of each

partition as the overall estimate for that partition. We have studied conditions

under which generalization rates can be obtained for such a partitioning based

KRR estimator. Moreover, we have shown its statistical advantages over both

a single KRR estimate and an estimator based on random data partitioning.

This is explained by the fact that a partitioning based estimator learns a piece-

wise KRR estimates, thereby allowing the possibility of lower approximation

error as well.

For the problem of stragglers/slow machines in distributed synchronous

gradient descent, we have proposed gradient coding — a framework that repli-

cates data blocks and codes across gradients. We have experimented with var-

ious gradient coding ideas on Amazon EC2 instances. Our proposed schemes

create computation overheads while keeping communication the same. The

benefit of this additional computation is fault-tolerance: we are able to re-

cover full gradients, even if s machines do not deliver their assigned work, or

are slow in doing so. Moreover, our partial straggler schemes provide fault tol-

erance while allowing all machines to do partial work. They however require

an extra round of communication.
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Appendix A

Appendix A - Proofs for Chapter 2

A.1 Proof of Corollary 2.1

Proof. For any t ∈ N∗sub(r), we have

N̂λ(r;D) = N∗sub(r)⇒ t ∈ N̂λ(r;D). (A.1)

For any t /∈ N∗sub(r), we have

t ∈ N̂λ(r;D)⇒ N̂λ(r;D) 6= N∗sub(r). (A.2)

Thus,

P(t ∈ N̂λ(r;D)) ≥ P(N̂λ(r;D) = N∗sub(r)) if t ∈ N∗sub(r) and,

P(t ∈ N̂λ(r;D)) ≤ P(N̂λ(r;D) 6= N∗sub(r)) if t /∈ N∗sub(r).
(A.3)

Now, using the result of Theorem 2.1 proves the corollary.

A.2 Proof of Proposition 2.1

Proof. The proof of this proposition is similar to Theorem 4.1 in [37]. First

note that,

E [p̃r,b,λ(t;D)] =
1(
n
b

) ∑
Db∈Sb(D)

E
[
F t
λ,r(Db)

]
=

1(
n
b

) ∑
Db∈Sb(D)

P
(
t ∈ N̂b,λ(r;Db)

)
,

(A.4)
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where the expectation and probability are taken over the samples D being

drawn i.i.d. For any fixed set of b indices, drawing n samples i.i.d. and then

choosing the b samples corresponding to the fixed indices is equivalent to draw-

ing b samples i.i.d. Thus, for any Db ∈ Sb(D), we have P
(
t ∈ N̂b,λ(r;Db)

)
=

pr,b,λ(t), which implies

E [p̃r,b,λ(t;D)] = pr,b,λ(t). (A.5)

Using Hoeffding’s inequality for a U-statistics [53], we can concentrate

p̃r,b,λ(t;D) around its expectation as

P
(
|p̃r,b,λ(t;D)− pr,b,λ(t)| >

ε

2

)
≤ 2 exp

(
−nε

2

2b

)
. (A.6)

Now, consider p̃r,b,λ(t;D) for a fixed set of samples D. We can think of

p̃r,b,λ(t;D) as the expected value of a random variable on a uniform distribution

over subsets of size b i.e. imagine we have a random variable Y which can take

values F t
λ,r(Db) for Db ∈ Sb(D), and

P
(
Y = F t

λ,r(Db)
)

=
1(
n
b

) , (A.7)

so that p̃r,b,λ(t;D) = E [Y ]. Then, p̂r,b,λ(t;D) is an estimate of E [Y ], computed

by averaging N values of Y , chosen independently and uniformly randomly.

Using McDiarmid’s inequality [40], we can therefore concentrate p̂r,b,λ(t;D)

around p̃r,b,λ(t;D) as

P
(
|p̂r,b,λ(t;D)− p̃r,b,λ(t;D)| > ε

2

∣∣∣D) ≤ 2 exp

(
−Nε

2

2

)
,

⇒ P
(
|p̂r,b,λ(t;D)− p̃r,b,λ(t;D)| > ε

2

)
≤ 2 exp

(
−Nε

2

2

)
,

(A.8)
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where we obtain the second inequality by integrating D out, since the RHS

does not depend on D.

Combining Equation (A.6) and (A.8), we get

P
(
|p̂r,b,λ(t;D)− pr,b,λ(t)| > ε

)
≤ 2 exp

(
−nε

2

2b

)
+ 2 exp

(
−Nε

2

2

)
. (A.9)

For, N ≥ dn
b
e, this becomes

P
(
|p̂r,b,λ(t;D)− pr,b,λ(t)| > ε

)
≤ 4 exp

(
−nε

2

2b

)
. (A.10)

Now, by the union bound,

P
(
∃ t ∈ V \ r s.t. |p̂r,b,λ(t;D)− pr,b,λ(t)| > ε

)
≤ 4(p− 1) exp

(
−nε

2

2b

)
≤ 4p exp

(
−nε

2

2b

)
(A.11)

Finally, observe that ∃t′ ∈ V \ r s.t.

|M̂r,b,λ(D)−Mr,b,λ| =
∣∣∣ max
t1∈V \r

p̂r,b,λ(t1;D) (1− p̂r,b,λ(t1;D))− max
t2∈V \r

pr,b,λ(t2) (1− pr,b,λ(t2))
∣∣∣

≤
∣∣∣p̂r,b,λ(t′;D) (1− p̂r,b,λ(t′;D))− pr,b,λ(t′) (1− pr,b,λ(t′))

∣∣∣
≤
∣∣∣p̂r,b,λ(t′;D)− pr,b,λ(t′)

∣∣∣+
∣∣∣ (p̂r,b,λ(t′;D)− pr,b,λ(t′)) (p̂r,b,λ(t

′;D) + pr,b,λ(t
′))
∣∣∣

≤ 3|p̂r,b,λ(t′;D)− pr,b,λ(t′)|
(A.12)

An instance of the t′ used in the above set of inequations can be one of t∗1 or

t∗2, corresponding to the optimal for

(
arg max
t1∈V \r

p̂r,b,λ(t1;D) (1− p̂r,b,λ(t1;D))

)

and

(
arg max
t2∈V \r

pr,b,λ(t2) (1− pr,b,λ(t2))

)
respectively.
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Thus,

|M̂r,b,λ(D)−Mr,b,λ| > ε⇒ ∃t′ ∈ V \r s.t. |p̂r,b,λ(t′;D)−pr,b,λ(t′)| > ε/3 (A.13)

Using the result of Equation (A.10) now proves the lemma.

A.3 Proof of Proposition 2.2

Proof. Consider any t ∈ V \ r. From Assumption 2.1, we know that

∀ λ ∈ [0, λmin(t)) , pr,b,λ(t) > (1− 2 exp(−c log p)) and,

∀ λ ∈ [λmin(t), λmax(t)] , 2 exp(−c log p) ≤ pr,b,λ(t) ≤ (1− 2 exp(−c log p)) .

(A.14)

This implies that

∀ λ ∈ [0, λmin(t)) , pr,b,λ(t) (1− pr,b,λ(t)) < γ and,

∀ λ ∈ [λmin(t), λmax(t)] , pr,b,λ(t) (1− pr,b,λ(t)) ≥ γ.
(A.15)

Suppose we pick λ′l = min
t∈V \r

λmin(t). Then for all λ < λ′l, Mr,b,λ < γ, and

at λ′l, Mr,b,λ′l
≥ γ. This means that λ′l is the solution to inf {λ ≥ 0 : Mr,b,λ ≥ γ}.

Thus, λl = inf {λ ≥ 0 : Mr,b,λ ≥ γ} exists and

λl = λ′l = min
t∈V \r

λmin(t). (A.16)

To prove the existence of λu, we first have the following claim, the proof

of which is described in Subsection A.3.1.

Claim A.1. For any node r ∈ V , there exists a regularization parameter

λs (0 ≤ λs ≤ 1) s.t. for all λ > λs, pr,b,λ(t) = 0 ∀ t ∈ V \ r, and as a conse-

quence, Mr,b,λ = 0.
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Now, observe that Mr,b,λ is a continuous function of λ, since Mr,b,λ =

max
t∈V \r

pr,b,λ(t) (1− pr,b,λ(t)) is just a maximum of continuous functions.

So, Mr,b,λl ≥ γ, Mr,b,λs = 0 (from Claim A.1) and the continuity of

Mr,b,λ, together imply that λu = inf {λ > λl : Mr,b,λ < γ} exists. Also, we

have λu ≤ λs.

Finally, (b) is a consequence of the continuity of pr,b,λ(t). From (A.16),

we know that λl = min
t∈V \r

λmin(t). Therefore, at t′ = arg min
t∈V \r

λmin(t) we have

pr,b,λl(t
′) = 1− 2 exp (−c log p) . (A.17)

Note that equality occurs due to continuity of pr,b,λ(t). At λu, since Mr,b,λu < γ,

we must have either pr,b,λu(t′) > 1−2 exp(−c log p) or pr,b,λ(t
′) < 2 exp(−c log p).

This means that either λu < λmin(t′) or λu > λmax(t′). However, since λu >

λl = λmin(t′), we cannot have the former. Thus, pr,b,λu(t′) < 2 exp(−c log p).

So, to summarize,

At λl, pr,b,λl(t
′) = 1− 2 exp (−c log p) and

at λu, pr,b,λu(t′) < 2 exp(−c log p),
(A.18)

i.e. between λl and λu, pr,b,λ(t
′) goes from a value close to 1, to a value close

to 0. Now, continuity of pr,b,λ(t
′) implies that for any k ∈ (γ, 1/4], there exists

a λ s.t. pr,b,λ(t
′) (1− pr,b,λ(t′)) ≥ k, which implies Mr,b,λ ≥ k.
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A.3.1 Proof of Claim A.1

Proof. Let D be any set of b samples, D = {x(1) . . . , x(b)}. Any solution, θ̃\r,

of (7) (with the samples D) must satisfy

∇L(θ̃\r;D) + λz = 0 (A.19)

for some z ∈ ∂‖θ̃\r‖1.

Suppose we have λ > ‖∇L(0;D)‖∞ and we pick zi = −[∇L(0;D)]i/λ.

Then, z ∈ ∂‖θ̃\r‖1 for θ̃\r = 0 and (0, z) satisfies (A.19). Thus, 0 is an

optimum for (7). Also, since we have shown the existence of a subgradient

z s.t. ‖z‖∞ < 1, by Lemma 1 in [49] we know that 0 is the only solution.

If we pick λs = max
D∈{−1,1}pb

‖∇L(0;D)‖∞, then for any λ > λs, 0 is the unique

optimum for any choice of D. This implies that pr,b,λ(t) = 0 ∀t ∈ V \ r and

Mr,b,λ = 0. Finally, note that

‖∇L(0;D)‖∞ = max
t∈V \r

∣∣∣∣∣ 1n
b∑
i=1

x(i)
r x

(i)
t

∣∣∣∣∣ ≤ 1⇒ λs ≤ 1 (A.20)

A.4 Proof of Proposition 2.4

Proof. Consider any t ∈ V \ r. We have

Either λu < λmin(t) or λu > λmax(t). (A.21)

This can be seen as at λu, we have Mr,b,λu > γ = 2 exp(−c log p) (1− 2 exp(−c log p)).

This implies that

Either pr,b,λu(t) > 1− 2 exp(−c log p) or pr,b,λu(t) < 2 exp(−c log p). (A.22)
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Based on Assumption 2.1(a), this implies equation (A.21).

Now, consider this for any two irrelevant variables t1, t2 /∈ N∗(r). We

cannot have λu < λmin(t1) and λu > λmax(t2) (or vice-versa), as this would

violate Assumption 2.1(b). Thus, we must have

Either λu < min
t/∈N∗(r)

λmin(t) or λu > max
t/∈N∗(r)

λmax(t). (A.23)

We shall show that the former possibility cannot happen. To see this, assume

λu < min
t/∈N∗(r)

λmin(t). Then, using Assumption 2.1(c), this means that λu <

λmax(t̃), for any t̃ ∈ V \r. But, from (A.21), this must imply that λu < λmin

(
t̃
)
,

for any t̃ ∈ V \r. However, this is a contradiction, since λu > λl = min
t∈V \r

λmin(t),

where the equality comes through the same argument used to show (A.16).

Thus, λu > max
t/∈N∗(r)

λmax(t). This implies that pr,b,λu(t) < 2 exp(−c log p)

for any t /∈ N∗(r) i.e.

For any t /∈ N∗(r), P
(
t /∈ N̂b,λu(r;D)

)
≥ 1− 2 exp(−c log p). (A.24)

Using union bound on the irrelevant variables, we get that P
(
N̂b,λu(r;D) ⊆ N∗(r)

)
≥

1− 2 exp (−(c− 1) log p).

A.5 Proof of Proposition 2.3

Proof. Following the same argument as in Proposition 2.4 above, we can infer

that for any t /∈ N∗(r), pr,b,λu(t) < 2 exp(−c log p).
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Using Corollary 2.1, we know that there exists a λ0 s.t.

pr,b,λ0(t) ≥ 1− 2 exp(−c1c4 log p) > 1− 2 exp(−c log p) if t ∈ N∗sub(r)

pr,b,λ0(t) ≤ 2 exp(−c1c4 log p) < 2 exp(−c log p) if t /∈ N∗sub(r).

(A.25)

Based on Assumption 2.1, this means for any t ∈ N∗sub(r) we have λ0 < λmin(t),

and for any t /∈ N∗sub(r) we have λ0 > λmax(t).

Observe that λ0 > λl. This is because for any t′ /∈ N∗sub(r), λ0 > λmax(t′)

which implies λ0 > λmin(t′), whereas λl = min
t′′∈V \r

λmin(t′′), using arguments used

to show (A.16).

Now, we shall show that we cannot have λ0 < λu. Suppose λ0 < λu.

From (A.25), we have that Mr,b,λ0 < γ, where γ is as defined in Assumption

1. So, we get λ0 ∈ (λl, λu) s.t. Mr,b,λ0 < γ. This is a contradiction since

λu = inf {λ > λl : Mr,b,λ < γ}. Therefore, we must have λu ≤ λ0.

So, for any t ∈ N∗sub(r), λu < λmin(t), which means that pr,b,λu(t) > 1−

2 exp(−c log p). Now, taking a union bound over the exclusion of all irrelevant

variables and the inclusion of all variables in N∗sub(r) proves the proposition.

A.6 Proof of Theorem 2.2

Since this is a simple corollary, we shall only provide an outline of the

proof here. The conditions specified in the theorem ensure that Proposition

2.3 is true for any node r ∈ V with degree, d(r) ≤ d, and that, Proposition

2.4 is true for any other node. In addition, owing to the choice of n and

92



N , Proposition 2.2 guarantees that M̂r,b,λ would be reliable estimate for Mr,b,λ

upto a tolerance of ε w.h.p. Thus, running Algorithm 2.2, with the parameters

specified, for all nodes would yield the N∗sub(r) neighbourhoods of nodes with

degree at most d, and yield subsets of the true neighbourhoods for the rest.

Ed is defined to be the set of edges (u, v) such that atleast one of its endpoints

is a node with degree at most d (say u), and the other belongs to the N∗sub

neighbourhood of the first (i.e. v ∈ N∗sub(u)). Then, if we consider the union

of all neighbourhoods obtained from Algorithm 2.2, clearly, the set Ed gets

recovered with high probability.

A.7 Proof of Corollary 2.2

This is again a simple consequence of Theorem 2.2. Under the condi-

tions specified here, the set Ed, defined in Theorem 2.2, becomes the set of

true edges E∗. Thus, we are guaranteed exact graph recovery in this setting.
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Appendix B

Appendix B - Supplementary for Chapter 3

B.1 Main bounds and covariance control

In this section we state bounds on Regi(λ, λ), Biasi(λ, n), ED [Vari(λ,D)]

from Lemma 3.1. However, first we require a supplemental result on the oper-

ator norm of the sample covariance error, under a suitable whitening. This is

typical of such analysis, and is detailed in the subsection below. Thereafter,

we present the bounds on the component terms.

B.1.1 Covariance control

Bounding the terms in Lemma 3.1 requires control of the operator norm

of the error in the sample covariance, under a suitable whitening. Specifically,

we need a bound on the quantity (for any i ∈ [m] and some k ≥ 2):

E
[∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥k]1/k

:= CovErri(λpi, n, k) (B.1)

where we use the shorthand: Σi,λpi = (Σi + λpiI). A general bound on this

can be found in Lemma C.1 in Appendix C.1.2. While the expression in

Lemma C.1 is complicated, it can be specialized for specific kernels to obtain

meaningful expressions, as also shown in the supplementary. We state these

for a few cases below. Their proof is provided in Appendix C.1.2.1
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Finite Rank Kernels. Suppose kernelK has finite rank r — examples

include the linear and polynomial kernels. Then, for any i ∈ [m] and k > 2,

we get: CovErri(λpi, n, k) = O
(√

log r Si(λpi)√
n

)
= O

(
r
√

log r√
n

)
Kernels with exponential decay in eigenvalues. Suppose kernelK

has exponentially decaying eigenvalues, λj ≤ c1 exp(−c2j
2) (∀j, and constants

c1, c2 > 0) — an example here is the Gaussian kernel. Then, for any i ∈ [m],

k > 2 and λpi ≥ poly(1/n), we get: CovErri(λpi, n, k) = O

(√
logn (log logn)
√
n

)
Kernels with polynomial decay in eigenvalues. Suppose kernel

K has polynomially decaying eigenvalues, λj ≤ cj−v (∀j, and constants c >

0, v > 2) — examples here include sobolev kernels with different orders. Then,

for any i ∈ [m], k > 2, and λpi ≥ 1
nα

for some constant α < v
2
− 1, we get:

CovErri(λpi, n, k) = O
( √

logn

n
1
2−

α+1
v

)
Overall, it would be useful to think of CovErri(λpi, n, k) to be scal-

ing as Õ
(
n−1/2

)
. Consequently, in the bounds to follow, terms of the form

CovErri(λpi, n, k)k scale as Õ(n−k/2) — and become negligible for sufficiently

large k.

B.1.2 Main bounds

We can now provide bounds on the terms in Lemma 3.1. The following

lemmas provide bounds on the Regularization error, Bias and Variance, for

any partition i ∈ [m], as given in Definition 2. We only state the lemma here

using the O(·) notation. Precise statements can be found in Lemmas C.2,

C.3 and C.4, in Appendices C.1.6, C.1.7 and C.1.8 respectively. Recall that
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pi = P(x ∈ Ci) and fi,λ is the solution of Eq. 3.7. Additionally, we use the

shorthand CEi to denote CovErri(λpi, n, k).

Lemma B.1 (Regularization, Bias and Variance). Consider any partition i ∈

[m]. Let k ≥ 2 such that Assumption 3.1 holds for this k (with constant a1),

and Assumption 3.2 holds (with Ai(λ) ≥ 0). Also, suppose pi satisfies (for any

i ∈ [m]): pi = Ω (log n/n). Then,

Regi(λ, λ) = O (T1) (B.2)

Biasi(λ, n) ≤ O
(

(CEi)
2
(
T2 + T3 + (CEi)

k T4 + (CEi)
k/2 T5

))
(B.3)

ED [Vari(λ,D)] ≤ O

(
σ2Si(λpi)

n
+ T1 + T2 + (CEi)

k T4 + (CEi)
k/2 T5

)
(B.4)

where we let: T1 = (λ−λ)2pi
λ

∥∥fi,λ∥∥2

H
, T2 =

√
piSi(λpi)Ai(λ)2

n
, T3 = T1

n
Si(λpi)

2 +

λpi‖fi,λ‖
2

H

n
, T4 =

∥∥fi,λ∥∥2

H
+ σ2

λ
, and T5 = Ai(λ)2

λ
√
pi

Note that Lemma B.1 has a minimum requirement on pi, namely:

pi = Ω (log n/n). However, this is minor since this essentially corresponds

to each partition having Ω(log n) samples. Also, this requirement can be

potentially avoided under other restrictions for e.g. if the unknown func-

tion f ∗ is uniformly bounded i.e. |f ∗(x)| ≤ M ∀x. Now, to interpret the

above bounds, recall from Appendix B.1.1 that CEi = CovErri(d, λpi, n) can

scale as Õ
(
n−1/2

)
. Therefore, terms of the form (CEi)

k — which scale as

Õ(n−k/2) — will be of lower order for a large enough k. Also, the bias bound

has a (CEi)
2 factor outside — an Õ(n−1) term. Indeed, in most cases, the
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bias term (Eq (B.3)) turns out to be of a much lower order than the vari-

ance term (Eq (B.4)). Moreover, the first two terms in the variance bound

(Eq (B.4)), and the bound for Regi (Eq (B.2)), become the overall dominat-

ing terms. Consequently, using Lemma 3.1, we have an overall scaling of:

ED
[
Erri(f̂i,λ)

]
≈ O

(
Approxi(λ) + (λ−λ)2pi

λ

∥∥fi,λ∥∥2

H
+ σ2Si(λpi)

n

)
.

B.2 Additional Discussion of Assumption 3.1

Let us recall Assumption 3.1.

Assumption (Eigenfunction moments). Let {λij, vij}∞j=1 denote the eigenvalue-

eigenfunction pairs for the covariance operator Σi. Then, ∀i ∈ [m], ∀j s.t. λij 6=

0, and for some constant k ≥ 2, we assume E
[(
vij(x)2

1 (x ∈ Ci) /λij
)2k
]
≤ ak1,

where a1 is a constant.

We note that we always have: E
[
vij(x)2

1 (x ∈ Ci) /λij
]

= E
[〈
vij, φx

〉2

H
1 (x ∈ Ci)λij

]
=〈

vij,Σiv
i
j

〉
λij = 1 i.e. the first moment of (vij(x)2

1 (x ∈ Ci) /λij) always ex-

ists. Thus, Assumption 3.1 simply enforces existence of higher moments of

(vij(x)2
1 (x ∈ Ci) /λij). This assumption may also be interpreted as requiring

partition-wise sub-Gaussian behaviour (up to 2k moments) in the RKHS space,

since its primary use is to bound the quantity E
[∥∥(Σi + λpiI)−1/2φx

∥∥2k

H
1 (x ∈ Ci)

]
.

We detail this in the subsection below.

B.2.1 Control of E
[∥∥(Σi + λI)−1/2φx

∥∥2k

H
1 (x ∈ Ci)

]
via Assumption 3.1

In this section, we show how Assumption 3.1 guarantees a bound on

E
[∥∥(Σi + λI)−1/2φx

∥∥2k

H
1 (x ∈ Ci)

]
. Consider any i ∈ [m]. Let us assume that
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Assumption 3.1 holds with parameters a1 and k(≥ 2).

Now, note that for any x ∈ X, we have:

φx =
∑
j

vij(x)vij

⇒ (Σi + λI)−1/2φx =
∑
j

√
λij√

λij + λ

vij(x)√
λij

vij

⇒
∥∥(Σi + λI)−1/2φx

∥∥2k

H
=

(∑
j

λij
λij + λ

vij(x)2

λij
vij

)k

=

(∑
k

λik/(λ
i
k + λ)

)k(∑
j

λij/(λ
i
j + λ)∑

k λ
i
k/(λ

i
k + λ)

vij(x)2

λij

)k

= Si(λ)k

(∑
j

λij/(λ
i
j + λ)

Si(λ)

vij(x)2

λij

)k

(a)

≤ Si(λ)k

(∑
j

λij/(λ
i
j + λ)

Si(λ)

(
vij(x)2

λij

)k)
(B.5)

where we have (a) using Jensen’s inequality.

Thus, we have

E
[∥∥(Σi + λI)−1/2φx

∥∥2k

H
1 (x ∈ Ci)

]
≤ Si(λ)kE

[∑
j

λij/(λ
i
j + λ)

Si(λ)

(
vij(x)2

λij

)k]
≤ Si(λ)kak1 (B.6)

where we have used Assumption 3.1 in the last step.

B.3 Generalization Error for Polynomial Kernels

Theorem B.1 (Kernels with polynomial eigenvalue decay). Let f ∗ ∈ H and

suppose kernel K has polynomially decaying eigenvalues : λj ≤ cj−v (∀j, and
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constants c > 0, v > 2). Let m denote the number of partitions, and let k ≥ 2

such that Assumption 3.1 holds for this k. Also, suppose λpi ≥ 1
nα

for some

constant 0 < α < v
2
− 1, and ∀i ∈ [m]. Then, the overall error for the DC-

estimator f̂C is given as:

ED
[
Err(f̂C)

]
= O

(
λ ‖f ∗‖2

H +
σ2

n
g(λ)S(λ) +m

(
log n

n1− 2(α+1)
v

)k/2(
‖f ∗‖2

H +
σ2

λ

))
(B.7)

Now, if m = O

(√
n
k− 2k(α+1)

v − 4v
v+1

(logn)k

)
and Assumption 3.3 holds at λ = 1/n

v
v+1

and pi ≥ 1

n
α− v

v+1
(∀i ∈ [m]), then the DC-estimator f̂C achieves the optimal

rate: ED
[
Err(f̂C)

]
= O

(
1

n
v
v+1

)
at λ = 1/n

v
v+1 .

Note that the requirement of pi ≥ 1

n
α− v

v+1
in the latter part of the

above theorem implicitly entails: α > v
v+1

. This, when coupled with the

requirement α < v
2
− 1 from the former part of the above theorem, can only

be meaningful for v > 1 +
√

2 ≈ 2.44. Therefore, the latter part of Theorem

B.1 is only applicable to slightly stronger polynomial decays than the former

part (which holds for v > 2). Now, assuming v > 1 +
√

2, the additional

requirement of m = O

(√
n
k− 2k(α+1)

v − 4v
v+1

(logn)k

)
is only meaningful for a sufficiently

large k. In particular, for k ≥ 4v2

(v+1)(v−2(α+1))
. When this happens, Theorem

B.1 guarantees the optimal rate ED
[
Err(f̂C)

]
= O

(
1

n
v
v+1

)
[67].

B.4 Quintuplet condition

The bound on the residual error EC in Theorem 3.3 requires that CEi =

CovErri(λpi, n, k) = Õ
(
n−1/2

)
— which is indeed the case for the kernels dis-
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cussed in Section B.1.1. Also, it requires that the quintuplet (n,m, k, pi, λ, λ),

for any i ∈ [m], satisfies:

m = O

(
max

(
λn

k−2
2 ,

n
k−2
2

‖fλ‖
2
H

))
, pi = Ω

(
min

(
m2

λ2nk−2
,
Approx(fλ)

nk/2λ

))
(B.8)

The above restrictions on m and pi essentially guarantee that all terms involv-

ing CEk
i in Lemma B.1 are of a lower order.
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Appendix C

Appendix B - Proofs for Chapter 3

C.1 Proofs

This section contains the proofs of all theorems, lemmas and corollaries

presented in this paper, as well as some figures and tables. First, we summarize

some definitions and notations in the following subsection.

C.1.1 Definitions and Notation

We are given n samples D = {(x1, y1), . . . , (xn, yn)}, of the tuple (x, y)

drawn i.i.d. from a distribution, P, on X × Y. x (and xi) is a random vector

in the input space X, also called the covariate. y (and yi) is a random vari-

able in the output space Y, also called the response. The collection of sets

{C1, . . . , Cm} is used to denote a disjoint partition of the covariate space:

X = ∪mi=1Ci and Ci ∩ Cj = {φ},∀ i, j ∈ [m] (C.1)

Additionally, we restrict Y ⊆ R and assume an additive noise model

relating the response to the covariate i.e. for each i ∈ [n]:

yi = f ∗(xi) + ηi. (C.2)

where f ∗ : X → R is an unknown mapping of covariates in X to responses in

R, and ηi is the random noise corresponding to sample i. We assume that f ∗
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is square integreable with respect to the marginal of P on X. Equivalently, we

can say f ∗ lies in the space L2(X,P) = {f : X→ R | ‖f‖2
L2

= E [f(x)2] <∞},

where P denotes the marginal of P on the input space X. The random noise

is assumed to be zero mean with bounded variance i.e. E [ηi|xi] = 0 and

E [η2
i |xi] ≤ σ2, ∀ i ∈ [n].

We are given a continuous, symmetric, positive definite kernel K :

X× X→ R. For any x ∈ X, we define φx := K(x, ·). Then, the Reproducing

Kernel Hilbert Space (RKHS) corresponding to kernel K is given as H =

span{φx, x ∈ X}, with inner product defined as〈∑
j

αjφxj ,
∑
k

βkφxk

〉
H

=
∑
j

∑
k

αjβkK(xj, xk) (C.3)

We require that the RKHS space H ⊂ L2(X,P) — which means ∀x, Ey∼P[K(x, y)2] <

∞— a condition which is always true for several kernel classes, including Gaus-

sian, Laplacian, or any trace class kernel w.r.t. P.

The partition based empirical and population covariance operators are

defined as (for partition Ci):

Σ̂i =
1

n

n∑
j=1

(φxj ⊗ φxj)1 (xj ∈ Ci) (C.4)

Σi = E [(φx ⊗ φx)1 (x ∈ Ci)] , (C.5)

where φx⊗φx denotes the operator φx 〈φx, ·〉H, and 1 (·) denotes the indicator
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function. Note that we have the relation:

Σ =
m∑
i=1

Σi (C.6)

where Σ = E [φx ⊗ φx], the overall covariance operator.

We let {λij, vij}j=1,...,∞ be the collection of eigenvalue-eigenfunction pairs

for Σi. Then,

Σi =
∑
j

λij(v
i
j ⊗ vij) (C.7)

For any d ∈ N, d ≥ 1, we define Pd as the projection operator onto the

first d eigenfunctions of Σi. Thus,

Pd =
d∑
j=1

vij ⊗ vij (C.8)

We denote by Σ̂d
i and Σd

i , the projected low-rank empirical and population

covariances (with rank = d), obtained using the operator Pd. Thus,

Σ̂d
i =

1

n

n∑
j=1

(Pdφxj ⊗ Pdφxj)1 (xj ∈ Ci) (C.9)

Σd
i =

d∑
j=1

λij(v
i
j ⊗ vij) (C.10)

For any λ > 0, we define the following spectral sums:

Si(λ) =
∞∑
j=1

λij
λij + λ

, Ui(d, λ) =
d∑
j=1

λij
λij + λ

, Li(d, λ) =
∑
j>d

λij
λij + λ

(C.11)
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Thus, Si(λ) = Ui(d, λ) + Li(d, λ), for any d ∈ N.

Finally, we also introduce the shorthand: Σi,λ = (Σi + λI), φ′x =

Σ
−1/2
i,λ φx and P⊥d =

∑
j>d(v

i
j ⊗ vij).

C.1.2 Moments of the operator norm for Covariance operators

In this section, we state a lemma providing a bound on the quantity

E
[∥∥∥Σ

−1/2
i,λ (Σ̂i − Σi)Σ

−1/2
i,λ

∥∥∥k]1/k

, for some constant k ≥ 2. Note that the norm

here, ‖·‖, corresponds to the operator norm. This quantity appears repeatedly

in other bounds, and therefore it is useful to have a lemma recording its bound,

as stated below. The proof can be found in Section C.1.9. First, we introduce

the following notion of truncated spectral sums for Σi. For any d ≥ 1, we let:

Li(d, λ) =
∞∑

j=d+1

λij
λij + λ

(C.12)

Ui(d, λ) =
d∑
j=1

λij
λij + λ

(C.13)

Note that for any d ≥ 1, we have: Li(d, λ) + Ui(d, λ) = Si(λ), where Si(λ) is

defined in Eq. (C.11).

Now, we have the following lemma providing the required bound.

Lemma C.1. Consider any d ∈ N, d ≥ 1. Also, let k ≥ 2 such that Assump-

tion 3.1 holds for this k (with constant a1). Then, we have

E
[∥∥∥Σ

−1/2
i,λ (Σ̂i − Σi)Σ

−1/2
i,λ

∥∥∥k]1/k

≤ CovErri(d, λ, n, k) (C.14)
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where we have the following expression for CovErri(d, λ, n, k):

CovErri(d, λ, n, k) = a1Li(d, λ) + a1

√
Li(d, λ)Ui(d, λ) +

a1

√
e log d Ui(d, λ)√

n

+
4e log d

(
a1Ui(d, λ) +

λi1
λi1+λ

)
n1−1/k

+
λid+1

λid+1 + λ
(C.15)

Using the above lemma and applying Markov’s inequality, we get the

following simple corollary.

Corollary C.1. Consider any d ∈ N, d ≥ 1, and let k ≥ 2 such that Assump-

tion 3.1 holds for this k (with constant a1). Then, we have

P
(∥∥∥Σ

−1/2
i,λ (Σ̂i − Σi)Σ

−1/2
i,λ

∥∥∥ ≥ 1

2

)
) ≤ 2k [CovErri(d, λ, n)]k (C.16)

C.1.2.1 Bounds on CovErri(d, λpi, n, k) for specific cases

While the expression in Eq. C.15 may seem complicated, it is possi-

ble to obtain concrete expressions for specific kernels through an appropriate

choice of d, similar to the approach in [67]. The idea is to choose a d which

makes the Li(d, λpi) terms negligible in Eq. C.15. We do this for a few cases

below.

Finite Rank Kernels. Suppose kernelK has finite rank r — examples

include the linear and polynomial kernels. Then, for any i ∈ [m], the partition-

wise covariance operator Σi is also finite rank. Thus, we can pick d = r (in Eq.

C.15), which gives Li(d, λpi) = 0 and λid+1 = 0. Also, Ui(d, λpi) = Si(λpi) ≤ r.
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Plugging these into Eq. C.15, we get:

CovErri(r, λpi, n) = O

(√
log r Si(λpi)√

n

)
= O

(
r
√

log r√
n

)
(C.17)

Kernels with polynomial decay in eigenvalues. Suppose ker-

nel K has polynomially decaying eigenvalues, λj ≤ cj−v (∀j, and constants

c > 0, v > 2) — examples here include sobolev kernels with different orders.

Now, since we have Σ =
∑m

i=1 Σi being a sum of psd operators, the minimax

characterization of eigenvalues yields: λij ≤ λj ∀j and any i ∈ [m]. As a con-

sequence, we have: Li(d, λ) ≤
∑

j>d
λj

λj+λ
and Si(λ) ≤ S(λ). Then, following

the same approach as [67] i.e. choosing d = nC/(v−1) for some constant C > 0,

we get:

Li(d, λpi) ≤
∫ ∞
d

cj−v

cj−v + λpi
dj ≤ c

λpi

∫ ∞
d

j−vdj ≤ c(v − 1)

λpi
d−(v−1) ≤ c(v − 1)

λpinC

(C.18)

and, Ui(d, λpi) ≤ d = nC/(v−1). Consequently, for v > 2 and λpi ≥ 1

n
C v
v−1−1 , we

get:

CovErri(n
C/(v−1), λpi, n) = O

(√
log n

n
1
2
− C
v−1

)
(C.19)

Kernels with exponential decay in eigenvalues. Suppose kernelK

has exponentially decaying eigenvalues, λj ≤ c1 exp(−c2j
2) (∀j, and constants

c1, c2 > 0) — an example here is the Gaussian kernel. Again, since Σ =∑m
i=1 Σi, the minimax characterization of eigenvalues yields: λij ≤ λj ∀j and

any i ∈ [m]. Thus: Li(d, λ) ≤
∑

j>d
λj

λj+λ
and Si(λ) ≤ S(λ). Choosing
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d = C
√

log n/
√
c2 for some constant C, we get:

Li(d, λpi) ≤
∫ ∞
d

c1 exp(−c2j
2)

c1 exp(−c2j2) + λpi
dj ≤ c1

λpi

∫ ∞
d

exp(−c2j
2)dj

≤ c1

λpi
exp(−c2d

2) ≤ c1

λpinC
(C.20)

and, Ui(d, λpi) ≤ d = C
√

log n/
√
c2. Consequently, as long as λpi ≥ poly(1/n),

we can choose a sufficiently large C to make the terms involving λid+1 and

Li(d, λpi) negligible. Thus, we get:

CovErri(C
√

log n, λpi, n) = O

(√
log n (log log n)√

n

)
(C.21)

C.1.3 Proof of Lemma 3.1

The proof is as follows:

Erri(f̂i,λ) = E
[
(f ∗(x)− f̂i,λ(x))2

]
= E

[(
f ∗(x)− fi,λ(x) + fi,λ(x)− fi,λ(x) + fi,λ(x)− f̂i,λ(x)

)2
]

(a)

≤ 2

(
Approxi(λ) + 2Regi(λ, λ) + 2E

[(
fi,λ(x)− f̂i,λ(x)

)2
])
(C.22)

where we have (a) since (a+ b+ c)2 ≤ 2(a2 + 2b2 + 2c2).

Now, following a standard bias-variance decomposition, we have:

ED
[
E
[(
fi,λ(x)− f̂i,λ(x)

)2
]]

= E
[(
fi,λ(x)− f̄i,λ(x)

)2
]

+ ED
[
E
[(
fi,λ(x)− f̂i,λ(x)

)2
]]

= Biasi(λ, n) + ED [Vari(λ,D)] (C.23)
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Combining the above expressions, we get:

ED
[
Erri(f̂i,λ)

]
≤ 2

[
Approxi(λ) + 2Regi(λ, λ) + 2Biasi(λ, n) + 2ED [Vari(λ,D)]

]
(C.24)

C.1.4 Proof of Theorems 3.1, 3.2 and B.1

The theorems are a simple consequence of combining Lemmas C.2,

C.3, and C.4 via Lemma 3.1, plugging Ai(λ) = 0 with λ = 0, ignoring the

bias terms which are of a lower order, and using the expressions for CEi =

CovErri(λpi, n, k) discussed in Appendix B.1.1.

C.1.5 Proof of Theorem 3.3

Consider any λ > 0, and let fλ be the solution of Eq. (3.19). Now, for

any partition i ∈ [m], consider the following optimization problem:

f̂i = arg min
f∈H,‖f‖H≤‖fλ‖H

E
[
(f ∗(x)− f(x))2

1 (x ∈ Ci)
]

(C.25)

By duality, ∃ λ′i ≥ 0 s.t. f̂i = f
i,λ
′
i
, with f

i,λ
′
i

being the solution of Eq. (3.7).

Now, by the optimality of f
i,λ
′
i
, we have:

Approxi(λ
′
i) = E

[
(f ∗(x)− f

i,λ
′
i
(x))2

1 (x ∈ Ci)
]

≤ E
[
(f ∗(x)− fλ(x))2

1 (x ∈ Ci)
]

= ApproxErrori(fλ) (C.26)

and
∥∥∥fi,λ′i∥∥∥H ≤ ‖fλ‖H.

Now, if λ
′
i ≤ λ, we are done. Suppose λ

′
i > λ. Then, we know that

Approxi(λ) ≤ ApproxError(fλ), since decreasing the regularization penalty
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from λ
′
i to λ would only decrease the approximation error. Moreover, using

the fact that the following function

T (λ) := min
f∈H

E
[
(f ∗(x)− f(x))2

1 (x ∈ Ci)
]

+ λpi ‖f‖2
H (C.27)

is a monotonically increasing function of λ[55], we have:

Approxi(λ) + λpi
∥∥fi,λ∥∥2

H
≤ Approxi(λ

′
i) + λpi

∥∥∥fi,λ′i∥∥∥2

H
(C.28)

≤ ApproxErrori(fλ) + λpi ‖fλ‖
2
H

(C.29)

Thus,
∥∥fi,λ∥∥H = O

(
‖fλ‖H +

√
ApproxErrori(fλ)

λpi

)
. Therefore, the result

holds with λi = min(λ, λ
′
i).

The bound on the estimation error EC is a simple consequence of the

fact that, under the conditions assumed, all terms in Lemma B.1 involving

(CE)ki are of a lower order, and that the condition Approx(λ) = O(λ ‖fλ‖
2
H

)

guarantees that: ∑
i

pi
∥∥fi,λi∥∥2

H
= O(‖fλ‖

2
H

) (C.30)

Then, combining Lemma B.1 via Lemma 3.1 gives us the required scal-

ing.

C.1.6 Regularization Bound

In this section we provide a proof of the bound on Regi(λ, λ) in Lemma

B.1. The bound with exact constants is stated below.

Lemma C.2. For any λ > 0, λ > 0 and partition i ∈ [m],

Regi(λ, λ) = E
[
(fi,λ(x)− fi,λ(x))2

1 (x ∈ Ci)
]
≤ pi

(λ− λ)2

λ

∥∥fi,λ∥∥2

H
(C.31)
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C.1.6.1 Proof of Lemma C.2

Proof. We want to bound

E
[
(fi,λ(x)− fi,λ(x))2

1 (x ∈ Ci)
]

=
∥∥fi,λ − fi,λ∥∥2

Σi

=
∥∥∥Σ

1/2
i (fi,λ − fi,λ)

∥∥∥2

H
(C.32)

Using first order conditions for the optimality of fi,λ and fi,λ, we have

(Σi + λpiI)fi,λ = E [yφx1 (x ∈ Ci)]

(Σi + λpiI)fi,λ = E [yφx1 (x ∈ Ci)] (C.33)

Thus, fi,λ = (Σi + λpiI)−1(Σi + λpiI)fi,λ.

Letting fi,λ =
∑

j αjv
i
j, we get

Σ
1/2
i (fi,λ − fi,λ) = pi(λ− λ)

∑
j

√
λij

λij + λpi
αjv

i
j

⇒
∥∥∥Σ

1/2
i (fi,λ − fi,λ)

∥∥∥2

H
= p2

i (λ− λ)2
∑
j

λij
(λij + λpi)2

α2
j

≤ pi
(λ− λ)2

λ

∑
j

α2
j = pi

(λ− λ)2

λ

∥∥fi,λ∥∥2

H
(C.34)

C.1.7 Bias Bound

In this section we provide a proof of the bound on Biasi(λ, n) in Lemma

B.1. The bound with exact constants is stated below.
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Lemma C.3. Consider any d ∈ N, d ≥ 1, and k ≥ 2. Suppose Assumption 3.1

holds for this k (with constant a1), and Assumption 3.2 holds. Also, suppose

∀i ∈ [m], pi satisfies: pi ≥ 16 log(npi)
n−1

. Then we have

Biasi(λ, n) ≤(CovErri(d, λpi, n))2×(
T1 + T2 + 2k+1 [CovErri(d, λpi, n)]k T3 + 2k/2+3 [CovErri(d, λpi, n)]k/2 T4

)
(C.35)

where we let

T1 =
16a1
√
piSi(λpi)Ai(λ)2

n

T2 =

(
16a2

1(λ− λ)2

λ

piSi(λpi)
2
∥∥fi,λ∥∥2

H

n
+

8λpi
∥∥fi,λ∥∥2

H

n

)

T3 =

(
2
∥∥fi,λ∥∥2

H
+
σ2

λ

)
(λi1 + λpi)

T4 =
(λi1 + λpi)Ai(λ)2

λ
√
pi

(C.36)

C.1.7.1 Proof of Lemma C.3

Proof. We want to bound Biasi(λ, n), where

Biasi(λ, n) = E
[
(fi,λ(x)− f̄i,λ(x))2

1 (x ∈ Ci)
]

= E
[(〈

fi,λ − f̄i,λ, φx
〉
H

)2
1 (x ∈ Ci)

]
=
∥∥fi,λ − f̄i,λ∥∥2

Σi
(C.37)

Let ∆b = fi,λ − f̂i,λ. Then, equivalently, we want to bound ‖E [∆b]‖2
Σi

Now, from first order conditions of optimality for Eqs. (3.2) and (3.8),
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we have

(Σ̂i + λpiI)f̂i,λ = Ê [yφx1 (x ∈ Ci)]

(Σi + λpiI)fi,λ = E [yφx1 (x ∈ Ci)] (C.38)

Combining the above, we get

E
[
(Σ̂i + λpiI)∆b

]
= E

[
(Σ̂i + λpiI)fi,λ

]
− E

[
(Σ̂i + λpiI)f̂i,λ

]
= (Σi + λpiI)fi,λ − E [yφx1 (x ∈ Ci)]

= 0 (C.39)

Rearranging and multiplying Σ
−1/2
i,λpi

, we get

Σ
1/2
i,λpi

E [∆b] = −E
[
Σ
−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

Σ
1/2
i,λpi

∆b

]
= −E

[
Σ
−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

Σ
1/2
i,λpi

E [∆b |X]
]

(C.40)

where we let X denote the set {x1, . . . , xn} i.e. the covariates in the data D.

So, ∥∥∥Σ
1/2
i,λpi

E [∆b]
∥∥∥2

H
=
∥∥∥E [Σ−1/2

i,λpi
(Σ̂i − Σi)Σ

−1/2
i,λpi

Σ
1/2
i,λpi

E [∆b |X]
]∥∥∥2

H

⇒
∥∥∥Σ

1/2
i E [∆b]

∥∥∥2

H

(a)

≤
∥∥∥Σ

1/2
i,λpi

E [∆b]
∥∥∥2

H
=
∥∥∥E [Σ−1/2

i,λpi
(Σ̂i − Σi)Σ

−1/2
i,λpi

Σ
1/2
i,λpi

E [∆b |X]
]∥∥∥2

H

(b)

≤
(
E
[∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

Σ
1/2
i,λpi

E [∆b |X]
∥∥∥
H

])2

(c)

≤
(
E
[∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥
H

∥∥∥Σ
1/2
i,λpi

E [∆b |X]
∥∥∥
H

])2

(d)

≤ E
[∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥2

H

]
E
[∥∥∥Σ

1/2
i,λpi

E [∆b |X]
∥∥∥2

H

]
(C.41)
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where we have (a) using the fact that 〈u,Σiu〉H < 〈u, (Σi + λpiI)u〉H ∀u ∈ H,

(b) by Jensen’s inequality, (c) by the definition of the operator norm, (d) by

the Cauchy-Schwarz inequality.

Thus,

‖E [∆b]‖2
Σi
≤ E

[∥∥∥Σ
−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥2

H

]
E
[∥∥∥Σ

1/2
i,λpi

E [∆b |X]
∥∥∥2

H

]
(C.42)

Now, Lemma C.1 provides a bound for E
[∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥2

H

]
. For

the remainder of the proof, we provide the bound for E
[∥∥∥Σ

1/2
i,λpi

E [∆b |X]
∥∥∥2

H

]
.

Combining these bounds will yield the main statement of the lemma.

From first order conditions again (Eq. (C.38)), we have

(Σ̂i + λpiI)E [∆b |X] = Ê [f ∗(x)φx1 (x ∈ Ci)]− (Σ̂i + λpi)fi,λ (C.43)

Multiplying by Σ
−1/2
i,λpi

on both sides and rewriting differently, we get(
Σ
−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

+ I
)

Σ
1/2
i,λpi

E [∆b |X]

= Σ
−1/2
i,λpi

(
Ê [f ∗(x)φx1 (x ∈ Ci)]− (Σ̂i + λpi)fi,λ

)
=
(
Ê
[
(f ∗(x)− fi,λ(x))Σ

−1/2
i,λpi

φx1 (x ∈ Ci)
]
− λpiΣ−1/2

i,λpi
fi,λ

)
(C.44)

⇒
∥∥∥(Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

+ I
)

Σ
1/2
i,λpi

E [∆b |X]
∥∥∥2

H

=
∥∥∥Ê [(f ∗(x)− fi,λ(x))Σ

−1/2
i,λpi

φx1 (x ∈ Ci)
]
− λpiΣ−1/2

i,λpi
fi,λ

∥∥∥2

H

=

∥∥∥∥∥ 1

n

n∑
j=1

wj

∥∥∥∥∥
2

H

(C.45)
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where we define wj := (f ∗(xj) − fi,λ(xj))Σ
−1/2
i,λpi

φxj1 (xj ∈ Ci) − λpiΣ
−1/2
i,λpi

fi,λ.

Note that E [wj] = 0.

Let us define the event Ecov =
{∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥ ≤ 1/2
}

. Note

that from Corollary C.1, we have P (Eccov) ≤ 2k [CovErri(d, λpi, n)]k. Now,

under the event Ecov,

E
[∥∥∥Σ

1/2
i,λpi

E [∆b |X]
∥∥∥2

H

]
≤ 4E

∥∥∥∥∥ 1

n

n∑
j=1

wj

∥∥∥∥∥
2

H


=

4

n2

n∑
j=1

E
[
‖wj‖2

H

]
(C.46)

To control E
[∥∥∥Σ

1/2
i,λpi

E [∆b |X]
∥∥∥2

H

]
overall, we have

E
[∥∥∥Σ

1/2
i,λpi

E [∆b |X]
∥∥∥2

H

]
= E

[∥∥∥Σ
1/2
i,λpi

E [∆b |X]
∥∥∥2

H
1 (Ecov)

]
+ E

[∥∥∥Σ
1/2
i,λpi

E [∆b |X]
∥∥∥2

H
1 (Eccov)

]
≤ 4

n2

n∑
j=1

E
[
‖wj‖2

H

]
+ (λi1 + λpi)E

[
E
[
‖∆b‖2

H |X
]
1 (Eccov)

]
(C.47)
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Bound on E
[
‖wj‖2

H

]
. We have

E
[
‖wj‖2

H

] (a)

≤ 2E
[
(f ∗(xj)− fi,λ(xj))2

∥∥∥Σ
−1/2
i,λpi

φxj

∥∥∥2

H
1 (xj ∈ Ci))

]
+ 2(λpi)

2
∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H

(b)

≤ 4E
[
(f ∗(xj)− fi,λ(xj))2

∥∥∥Σ
−1/2
i,λpi

φxj

∥∥∥2

H
1 (xj ∈ Ci))

]
+ 4E

[
(fi,λ(xj)− fi,λ(xj))2

∥∥∥Σ
−1/2
i,λpi

φxj

∥∥∥2

H
1 (xj ∈ Ci))

]
+ 2(λpi)

2
∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H

(c)

≤ 4
√
E
[
(f ∗(xj)− fi,λ(xj))41 (xj ∈ Ci)

]√
E
[∥∥∥Σ

−1/2
i,λpi

φxj

∥∥∥4

H
1 (xj ∈ Ci))

]
+ 4

∥∥fi,λ − fi,λ∥∥2

Σi,λpi
E
[∥∥∥Σ

−1/2
i,λpi

φxj

∥∥∥4

H
1 (xj ∈ Ci))

]
+ 2(λpi)

2
∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H

(d)

≤ 4a1
√
piAi(λ)2Si(λpi) + 4a2

1Si(λpi)
2
∥∥fi,λ − fi,λ∥∥2

Σi,λpi
+ 2(λpi)

2
∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H

(e)

≤ 4a1
√
piAi(λ)2Si(λpi) + 4a2

1pi
(λ− λ)2

λ
Si(λpi)

2
∥∥fi,λ∥∥2

H
+ 2λpi

∥∥fi,λ∥∥2

H

=
[
4a1
√
piAi(λ)2

]
Si(λpi) +

[
4a2

1pi
(λ− λ)2

λ
Si(λpi)

2 + 2λpi

] ∥∥fi,λ∥∥2

H

(C.48)

where we have (a) using ‖x+ y‖2
H ≤ 2 ‖x‖2

H + 2 ‖y‖2
H, (b) since (f ∗(xj) −

fi,λ(xj))
2 ≤ 2(f ∗(xj) − fi,λ(xj))

2 + 2(fi,λ(xj) − fi,λ(xj))
2, (c) using Cauchy-

Schwarz inequality in two different ways, namely, E [XY ] ≤
√
E [X2]

√
E [Y 2]

and (fi,λ(xj)−fi,λ(xj))2 =
(〈
fi,λ − fi,λ, φxj

〉
H

)2

≤
∥∥fi,λ − fi,λ∥∥2

Σi,λpi

∥∥∥Σ
−1/2
i,λpi

φxj

∥∥∥2

H
,

(d) using Assumption 3.2, and via Jensen’s inequality and Assumption 3.1

E
[∥∥∥Σ

−1/2
i,λpi

φxj

∥∥∥4

H
1 (xj ∈ Ci))

]
= E

(∑
j

λij
λij + λpi

vij(x)2

λij
1 (xj ∈ Ci)

)2


≤ Si(λpi)
2
∑
j

λij/(λ
i
j + λpi)∑

k λ
i
k/(λ

i
k + λpi)

E

[
vij(x)4

λij
2 1 (xj ∈ Ci)

]
= a2

1Si(λpi)
2, (C.49)
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(e) using the relation fi,λ = Σ−1
i,λpi

Σi,λpi
fi,λ.

Bound on E
[
‖∆b‖2

H | {x1, . . . xn}
]
. We have

E
[
‖∆b‖2

H | {x1, . . . xn}
] (a)

≤ 2 ‖fi,λ‖2
H

+ 2E
[∥∥∥f̂i,λ∥∥∥2

H
| {x1 . . . xn}

]
(b)

≤ 4
∥∥fi,λ∥∥2

H
+

2

λ

1

ni

n∑
j=1

(f ∗(xj)− fi,λ(xj))2
1 (xj ∈ Ci) +

2σ2

λ

(C.50)

where we have (a) using ‖x+ y‖2
H ≤ 2 ‖x‖2

H + 2 ‖y‖2
H, (b) using optimality of

f̂i,λ for the loss function in Eq. (3.4).

Overall Bound. Combining the above bounds with the terms in Eq.

(C.47), we have

4

n2

n∑
j=1

E
[
‖wj‖2

H

]
≤ 4Si(λpi)

n

[
4a1
√
piAi(λ)2

]
+

4
∥∥fi,λ∥∥2

H

n

[
4a2

1pi
(λ− λ)2

λ
Si(λpi)

2 + 2λpi

]
(C.51)

and

E
[
E
[
‖∆b‖2

H |x1, . . . xn
]
1 (Eccov)

]
≤
(

4
∥∥fi,λ∥∥2

H
+

2σ2

λ

)
P(Eccov)

+
2

λ
E

[
1

ni

n∑
j=1

(f ∗(xj)− fi,λ(xj))2
1 (xj ∈ Ci)1 (Eccov)

]
(C.52)
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Now,

E
[

1

ni
(f ∗(xj)− fi,λ(xj))2

1 (xj ∈ Ci)1 (Eccov)

]
(a)

≤

√
E
[

1

n2
i

(f ∗(xj)− fi,λ(xj))41 (xj ∈ Ci)
]√

P(Eccov)

(b)
=
√

P(Eccov)
√
pi

√
E
[
(f ∗(xj)− fi,λ(xj))4 |xj ∈ Ci

]
E
[

1

(1 + Y )2

]
(c)

≤
√
P(Eccov)

√
piAi(λ)2

√(
exp(−(n− 1)pi/8) +

4

((n− 1)pi)2

)
(d)

≤ 4

n
√
pi

√
P(Eccov)Ai(λ)2 (C.53)

where we have (a) using Cauchy-Schwarz, (b) using ni =
∑n

j=1 1 (xj ∈ Ci),

independence of x1, . . . , xn, and letting Y ∼ Bin(n− 1, pi), (c) using Assump-

tion 3.2 and E
[

1
(1+Y )2

]
≤ exp(−np/8) + 4

(np)2
for Y ∼ Bin(n, p) with p ≤ 1/2,

(d) using pi ≥ 16 log(npi/2)
n−1

.

Consequently, we have

E
[
E
[
‖∆b‖2

H |x1, . . . xn
]
1 (Eccov)

]
≤
(

4
∥∥fi,λ∥∥2

H
+

2σ2

λ

)
P(Eccov) + 8

√
P(Eccov)

Ai(λ)2

λ
√
pi

(C.54)

Finally, plugging Eqs. (C.51) and (C.54) into Eq. (C.47) followed by

Eq. (C.42), we have the bias bound

‖E [∆b]‖2
Σi
≤

(CovErri(d, λpi, n))2
(
T1 + T2 + 2k+1 [CovErri(d, λpi, n)]k T3 + 2k/2+3 [CovErri(d, λpi, n)]k/2 T4

)
(C.55)
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where we let

T1 =
16a1
√
piSi(λpi)Ai(λ)2

n

T2 =

(
16a2

1(λ− λ)2

λ

piSi(λpi)
2
∥∥fi,λ∥∥2

H

n
+

8λpi
∥∥fi,λ∥∥2

H

n

)

T3 =

(
2
∥∥fi,λ∥∥2

H
+
σ2

λ

)
(λi1 + λpi)

T4 =
(λi1 + λpi)Ai(λ)2

λ
√
pi

(C.56)

C.1.8 Variance Bound

In this section we provide a proof of the bound on ED [Vari(λ,D)] in

Lemma B.1. The bound with exact constants is stated below.

Lemma C.4. Consider any d ∈ N, d ≥ 1, and k ≥ 2. Suppose Assumption 3.1

holds for this k (with constant a1), and Assumption 3.2 holds. Also, suppose

∀i ∈ [m], pi satisfies: pi = Ω (log n/n). Then we have

E [Vari(λ,D)] ≤
4(σ2 + a1

√
piAi(λ)2)Si(λpi)

n
+ 4

(λ− λ)2pi
λ

∥∥fi,λ∥∥2

H

+ 2k+2 [CovErri(d, λpi, n)]kW1 + 2
k
2

+4 [CovErri(d, λpi, n)]k/2W2

(C.57)

where we let

W1 = λi1

(∥∥fi,λ∥∥2

H
+
σ2

2λ

)
W2 = λi1

Ai(λ)2

λ
√
pi

(C.58)
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C.1.8.1 Proof of Lemma C.4

Proof. We want to bound the quantity E [Vari(λ,D)], where

Vari(λ,D) = E
[
(f̄i,λ(x)− f̂i,λ(x))2

1 (x ∈ Ci)
]

(C.59)

=
∥∥∥f̄i,λ − f̂i,λ∥∥∥2

Σi
(C.60)

Since f̄i,λ = E
[
f̂i,λ

]
minimizes E

[∥∥∥f̂i,λ − f∥∥∥2

Σi

]
for f ∈ H, we can get:

E [V ari(λ,D)] = E
[∥∥∥f̄i,λ − f̂i,λ∥∥∥2

Σi

]
≤ E

[∥∥∥fi,λ − f̂i,λ∥∥∥2

Σi

]
(C.61)

where fi,λ is the solution of (3.7). Let ∆v = f̂i,λ − fi,λ.

Now, from first order optimality conditions for Eq (3.2), we have

(Σ̂i + λpiI)f̂i,λ = Ê [yφx1 (x ∈ Ci)] (C.62)

= Ê [f ∗(x)φx1 (x ∈ Ci)] + Ê [ηφx1 (x ∈ Ci)] (C.63)

Subtracting (Σ̂ + λpiI)fi,λ from the above, we get,

(Σ̂i + λpiI)∆v = Ê
[
(f ∗(x)− fi,λ(x))φx1 (x ∈ Ci)− λpifi,λ

]
+ Ê [ηφx1 (x ∈ Ci)]

(C.64)

= Ê
[
(f ∗(x)− fi,λ(x))φx1 (x ∈ Ci)− λpifi,λ

]
+ Ê [ηφx1 (x ∈ Ci)] + (λ− λ)pifi,λ

(C.65)

Thus,(
Σ
−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

+ I
)

Σ
1/2
i,λpi

∆v = Ê
[
(f ∗(x)− fi,λ(x))Σ

−1/2
i,λpi

φx1 (x ∈ Ci)− λpiΣ−1/2
i,λpi

fi,λ

]
+ Ê

[
ηΣ
−1/2
i,λpi

φx1 (x ∈ Ci)
]

+ (λ− λ)piΣ
−1/2
i,λpi

fi,λ

(C.66)
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Let us define the event Ecov =
{∥∥∥Σ

−1/2
i,λpi

(Σ̂i − Σi)Σ
−1/2
i,λpi

∥∥∥ ≤ 1/2
}

. Note that

from Corollary C.1, we have P (Eccov) ≤ 2k [CovErri(d, λpi, n)]k. Now, under

the event Ecov,

E
[∥∥∥Σ

1/2
i,λpi

∆v

∥∥∥2

H

]
≤ 4E

[∥∥∥Ê [(f ∗(x)− fi,λ(x))Σ
−1/2
i,λpi

φx1 (x ∈ Ci)− λpiΣ−1/2
i,λpi

fi,λ

]∥∥∥2

H

]
+ 4E

[∥∥∥Ê [ηΣ
−1/2
i,λpi

φx1 (x ∈ Ci)
]∥∥∥2

H

]
+ 4(λ− λ)2p2

i

∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H

(C.67)

Now, we can control each of the component terms in the above inequality as

follows:

4E
[∥∥∥Ê [(f ∗(x)− fi,λ(x))Σ

−1/2
i,λpi

φx1 (x ∈ Ci)− λpiΣ−1/2
i,λpi

fi,λ

]∥∥∥2

H

]
(a)
=

4

n
E
[
(f ∗(x)− fi,λ(x))2

∥∥∥Σ
−1/2
i,λpi

φx

∥∥∥2

H
1 (x ∈ Ci)

]
− 4

n
λ

2
p2
i

∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H

(b)

≤ 4

n

√
E
[
(f ∗(x)− fi,λ(x))41 (x ∈ Ci)

]√
E
[∥∥∥Σ

−1/2
i,λpi

φx

∥∥∥4

H
1 (x ∈ Ci)

]
(c)

≤ 4

n
a1
√
piAi(λ)2Si(λpi) (C.68)

where we have (a) using independence of {x1, . . . , xn} and

E
[
(f ∗(x)− fi,λ(x))φx1 (x ∈ Ci)− λpifi,λ

]
= 0 (via first order optimality con-

ditions for fi,λ) , (b)using Cauchy-Schwarz and ignoring the negative quantity,

(c) using Assumption 3.2 and E
[∥∥∥Σ

−1/2
i,λpi

φx

∥∥∥4

H
1 (x ∈ Ci)

]
≤ a2

1Si(λpi)
2 (via

Assumption 3.1),
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And,

4E
[∥∥∥Ê [ηΣ

−1/2
i,λpi

φx1 (x ∈ Ci)
]∥∥∥2

H

]
= 4E

[
1

n2

n∑
j=1

n∑
k=1

ηjηk

〈
Σ
−1/2
i,λpi

φxj1 (xj ∈ Ci) ,Σ−1/2
i,λpi

φxk1 (xk ∈ Ci)
〉
H

]
(a)
= 4E

[
1

n2

n∑
j=1

η2
j

〈
Σ
−1/2
i,λpi

φxj ,Σ
−1/2
i,λpi

φxj

〉
H
1 (xj ∈ Ci)

]
(b)

≤ 4σ2Si(λpi)

n
(C.69)

where we have (a) since E [ηjηk] = 0 for j 6= k, (b) using E
[
η2
j

]
≤ σ2,

E
[∥∥∥Σ

−1/2
i,λpi

φxj

∥∥∥2

H

]
= Si(λpi) and the independence of ηj and xj,

And,

4(λ− λ)2p2
i

∥∥∥Σ
−1/2
i,λpi

fi,λ

∥∥∥2

H
≤ 4(λ− λ)2p2

i

∥∥fi,λ∥∥2

H

λi1 + λpi

≤ 4
(λ− λ)2pi

λ

∥∥fi,λ∥∥2

H
(C.70)

Thus, overall, we have

E
[∥∥∥Σ

1/2
i ∆v

∥∥∥2

H

]
= E

[∥∥∥Σ
1/2
i ∆v

∥∥∥2

H
1 (Ecov)

]
+ E

[∥∥∥Σ
1/2
i ∆v

∥∥∥2

H
1 (Eccov)

]
≤ E

[∥∥∥Σ
1/2
i,λpi

∆v

∥∥∥2

H
1 (Ecov)

]
+ E

[∥∥∥Σ
1/2
i ∆v

∥∥∥2

H
1 (Eccov)

]
≤

4(σ2 + a1
√
piAi(λ)2)Si(λpi)

n
+ 4

(λ− λ)2pi
λ

∥∥fi,λ∥∥2

H
+ E

[∥∥∥Σ
1/2
i ∆v

∥∥∥2

H
1 (Eccov)

]
≤

4(σ2 + a1
√
piAi(λ)2)Si(λpi)

n
+ 4

(λ− λ)2pi
λ

∥∥fi,λ∥∥2

H

+ λi1E
[
E
[
‖∆v‖2

H |x1 . . . xn
]
1 (Eccov)

]
(C.71)

where in the last step, we use the fact that Ecov only depends on {x1, . . . xn}.
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Now, we have the following bound on E
[
‖∆v‖2

H |x1 . . . xn
]
.

E
[
‖∆v‖2

H |x1 . . . xn
]

= E
[∥∥∥f̂i,λ − fi,λ∥∥∥2

H
|x1 . . . xn

]
≤ 2E

[∥∥∥f̂i,λ∥∥∥2

H
|x1 . . . xn

]
+ 2

∥∥fi,λ∥∥2

H

(a)

≤ 4
∥∥fi,λ∥∥2

H
+ 2

σ2

λ
+

2

λ

1

ni

n∑
j=1

(f ∗(xj)− fi,λ(xj))2
1 (xj ∈ Ci)

(C.72)

where we have (a) using the optimality of f̂i,λ in Eq. (3.4)

Plugging the above back into Eq. (C.71), we get

E [Vari(λ,D)] ≤
4(σ2 + a1

√
piAi(λ)2)Si(λpi)

n
+ 4

(λ− λ)2pi
λ

∥∥fi,λ∥∥2

H
+ 4λi1P(Eccov)

(∥∥fi,λ∥∥2

H
+
σ2

2λ

)
+ 4

λi1
λ
E

[
1

ni

n∑
j=1

(f ∗(xj)− fi,λ(xj))2
1 (xj ∈ Ci)1 (Eccov)

]
(a)

≤
4(σ2 + a1

√
piAi(λ)2)Si(λpi)

n
+ 4

(λ− λ)2pi
λ

∥∥fi,λ∥∥2

H
+ 4λi1P(Eccov)

(∥∥fi,λ∥∥2

H
+
σ2

2λ

)
+ 16

λi1
λ
√
pi

√
P(Eccov)Ai(λ)2

≤
4(σ2 + a1

√
piAi(λ)2)Si(λpi)

n
+ 4

(λ− λ)2pi
λ

∥∥fi,λ∥∥2

H

+ 2k+2λi1 [CovErri(d, λpi, n)]k
(∥∥fi,λ∥∥2

H
+
σ2

2λ

)
+ 2

k
2

+4λi1 [CovErri(d, λpi, n)]k/2
Ai(λ)2

λ
√
pi

(C.73)

where we have (a) using the same sequence of inequalities employed in Eq.

(C.53).

122



C.1.9 Proof of Lemma C.1

Proof. Using the triangle inequality, we obtain the decomposition

E
[∥∥∥Σ

−1/2
i,λ (Σ̂i − Σi)Σ

−1/2
i,λ

∥∥∥k]1/k

≤ E
[∥∥∥Σ

−1/2
i,λ (Σ̂i − Σ̂d

i )Σ
−1/2
i,λ

∥∥∥k]1/k

︸ ︷︷ ︸
T1

(C.74)

+ E
[∥∥∥Σ

−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ

∥∥∥k]1/k

︸ ︷︷ ︸
T2

+
∥∥∥Σ
−1/2
i,λ (Σd

i − Σi)Σ
−1/2
i,λ

∥∥∥︸ ︷︷ ︸
T3

Bound on T1. Consider the term
∥∥∥Σ
−1/2
i,λ (Σ̂i − Σ̂d

i )Σ
−1/2
i,λ

∥∥∥. Using the

definition of Σ̂i and Σ̂d
i from Eqs. (C.4) and (C.9), and then applying the

triangle inequality, we have∥∥∥Σ
−1/2
i,λ (Σ̂i − Σ̂d

i )Σ
−1/2
i,λ

∥∥∥ ≤ 1

n

n∑
j=1

∥∥∥Σ
−1/2
i,λ ((φxj ⊗ φxj)− (Pdφxj ⊗ Pdφxj))Σ

−1/2
i,λ

∥∥∥ 1 (xj ∈ Ci)

(C.75)

Now, recall that for any x ∈ X, we let Σ
−1/2
i,λ φx = φ′x and P⊥d =

∑
j>d(v

i
j ⊗ vij).

Also, φ′x = Pdφ
′
x + P⊥d φ

′
x. Then,∥∥∥Σ

−1/2
i,λ ((φx ⊗ φx)− (Pdφx ⊗ Pdφx))Σ−1/2

i,λ

∥∥∥
= ‖(φ′x ⊗ φ′x)− (Pdφ

′
x ⊗ Pdφ′x)‖

=
∥∥(P⊥d φ

′
x ⊗ P⊥d φ′x) + (P⊥d φ

′
x ⊗ Pdφ′x) + (Pdφ

′
x ⊗ P⊥d φ′x)

∥∥
=

1

2

∥∥P⊥d φ′x ⊗ (P⊥d φ
′
x + 2Pdφ

′
x) + (P⊥d φ

′
x + 2Pdφ

′
x)⊗ P⊥d φ′x

∥∥
(a)
=

1

2

(∥∥P⊥d φ′x∥∥2

H
+
∥∥P⊥d φ′x∥∥H ∥∥P⊥d φ′x + 2Pdφ

′
x

∥∥
H

)
(b)

≤
∥∥P⊥d φ′x∥∥2

H
+
∥∥P⊥d φ′x∥∥H ‖Pdφ′x‖H (C.76)
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where we have (a) using ‖u⊗ v + v ⊗ u‖ = (〈v, u〉H + ‖u‖H ‖v‖H), and (b)

using the triangle inequality.

Plugging this back into Eq. (C.75), we get∥∥∥Σ
−1/2
i,λ (Σ̂i − Σ̂d

i )Σ
−1/2
i,λ

∥∥∥ ≤ 1

n

n∑
j=1

(∥∥∥P⊥d φ′xj∥∥∥2

H
+
∥∥∥P⊥d φ′xj∥∥∥

H

∥∥∥Pdφ′xj∥∥∥
H

)
1 (xj ∈ Ci)

(C.77)

Taking expectation of the kth power on both sides, and using the triangle

inequality again, we get

E
[∥∥∥Σ

−1/2
i,λ (Σ̂i − Σ̂d

i )Σ
−1/2
i,λ

∥∥∥k]1/k

≤ 1
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E
[∥∥∥P⊥d φ′xj∥∥∥2k

H
1 (xj ∈ Ci)

]1/k

+
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n

n∑
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E
[∥∥∥P⊥d φ′xj∥∥∥k

H

∥∥∥Pdφ′xj∥∥∥k
H
1 (xj ∈ Ci)

]1/k

(a)

≤ 1

n

n∑
j=1

E
[∥∥∥P⊥d φ′xj∥∥∥2k

H
1 (xj ∈ Ci)

]1/k

+
1

n

n∑
j=1

E
[∥∥∥P⊥d φ′xj∥∥∥2k

H
1 (xj ∈ Ci)

]1/2k

E
[∥∥∥Pdφ′xj∥∥∥2k

H
1 (xj ∈ Ci)

]1/2k

(C.78)

where we have (a) using the Cauchy-Schwarz inequality.

Now, as a consequence of the reproducing property of kernels, we note

that φx, for any x ∈ X, has the representation:

φx =
∑
j

vij(x)vij (C.79)
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Thus,

φ′x = Σ
−1/2
i,λ φx =

∑
j

vij(x)√
λij + λ

vij

⇒ P⊥d φ
′
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vij

⇒
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i
j/(λ

i
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i
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i
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(
(vij(x))2
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)k)
(C.80)

where we have (a) using Jensen’s inequality.

Therefore, using Assumption 3.1, we get

E
[∥∥P⊥d φ′x∥∥2k

H
1 (x ∈ Ci)

]1/k

≤ a1

(∑
j>d

λij
λij + λ

)
(C.81)

Similarly, we can obtain

E
[
‖Pdφ′x‖

2k
H 1 (x ∈ Ci)

]1/k

≤ a1

(
d∑
j=1

λij
λij + λ

)
(C.82)
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Combining these bounds gives

E
[∥∥∥Σ

−1/2
i,λ (Σ̂i − Σ̂d

i )Σ
−1/2
i,λ

∥∥∥k]1/k
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+

√√√√∑
j>d

λij
λij + λ

√√√√ d∑
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λij
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
(C.83)

= a1

(
Li(d, λ) +

√
Li(d, λ)Ui(d, λ)

)
where Li(d, λ) =

∑
j>d

λij
λij+λ

and Ui(d, λ) =
∑d

j=1

λij
λij+λ

.

Bound on T2. We want to bound the quantity E
[∥∥∥Σ

−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ

∥∥∥k]1/k

.

Using the definition of Σ̂d
i from Eq. (C.9), we have

Σ
−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ =

1

n

n∑
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−1/2
i,λ (Pdφxj ⊗ Pdφxj1 (xj ∈ Ci))Σ−1/2

i,λ − Σ
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)
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′
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−1/2
i,λ Σd

iΣ
−1/2
i,λ

)
(C.84)

where φ′x = Σ
−1/2
i,λ φx, for any x ∈ X. Now, as seen in Eq. C.80, we have the

representation:

Pdφ
′
xj

=
d∑

m=1

vim(xj)√
λim + λ

vim (C.85)

⇒ Pdφ
′
xj
⊗ Pdφ′xj =

d∑
m=1

d∑
n=1

vim(xj)v
i
n(xj)√

λim + λ
√
λin + λ

(vim ⊗ vin) (C.86)

Also, using the definition of Σd
i from Eq. C.10, we have the relation:

Σ
−1/2
i,λ Σd

iΣ
−1/2
i,λ =

d∑
m=1

λim
λim + λ

(vim ⊗ vim) (C.87)
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Now, let Aj ∈ Rd×d be a matrix such that

For m 6= n, Aj(m,n) = vim(xj)v
i
n(xj)1 (xj ∈ Ci) /

√
(λim + λ)(λin + λ) (C.88)

Aj(m,m) =
(
vim(xj)

2
1 (xj ∈ Ci)− λim

)
/(λim + λ) (C.89)

Also, let B =
∑n

j=1Aj/n. Then,

Σ
−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ =

1

n

n∑
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(
d∑

m=1

d∑
n=1

Aj(m,n)(vim ⊗ vin)

)
(C.90)

=
d∑

m=1

d∑
n=1

B(m,n)(vim ⊗ vin) (C.91)

So, we get∥∥∥Σ
−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ

∥∥∥ =

∥∥∥∥∥
d∑
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d∑
n=1

B(m,n)(vim ⊗ vin)

∥∥∥∥∥ = ‖B‖2 =

∥∥∥∥∥ 1

n

n∑
j=1

Aj

∥∥∥∥∥
2

(C.92)

where ‖·‖2 corresponds to the usual spectral norm for finite dimensional ma-

trices.

Thus to bound E
[∥∥∥Σ

−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ

∥∥∥k]1/k

, we need to bound E
[∥∥∥ 1

n

∑n
j=1Aj

∥∥∥k
2

]1/k

.

To do this, we can use the following result from [12] (similar to its use in [67])

which provides a bound on the moment of the spectral norm of a sum of finite

dimensional random matrices.

Lemma C.5. Theorem A.1 [12] Let q ≥ 2, and fix r ≥ max{q, log d}. Con-

sider a finite sequence {Yi} of independent, symmetric, random, self-adjoint

matrices with dimension d× d. Then,

E

[∥∥∥∥∥∑
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√
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(C.93)
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We apply Lemma C.5 in our case with the sequence of matrices
{
Aj
n

}
to get

E

∥∥∥∥∥ 1

n
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j=1

Aj

∥∥∥∥∥
k

2

1/k

≤
√
e log d

n

∥∥∥∥∥
n∑
j=1

E
[
A2
j

]∥∥∥∥∥
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(C.94)
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Now, we can bound
∥∥∥∑n

j=1 E
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2
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1
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1 (C.95)

where we have (a) using the triangle inequality, (b) using Jensen’s inequality,

(c) since the spectral norm is upper bounded by the trace, (d) using the fact
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that E [vim(xj)
2
1 (xj ∈ Ci)] = λim for anym, (e) using Jensen’s inequality again,

and (f) using Assumption 3.1.

We can also bound E
[
maxj ‖Aj‖k2

]
as:

E
[
max
j
‖Aj‖k2

]
≤

n∑
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E
[
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(a)
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2
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(
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(
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)k)
(C.96)

where we have (a) using the triangle inequality for the spectral norm and the

fact that Aj = vvT − D with v =
{
vim(xj)1 (xj ∈ Ci) /

√
λim + λ

}d
m=1

and

D = diag
(
{λim/(λim + λ)}dm=1

)
, (b) using the inequality (a+ b)k ≤ 2k(ak + bk),

and (c) using Jensen’s inequality and Assumption 3.1.

Thus,

E
[
max
j
‖Aj‖k2

]1/k

≤ 2n1/k

(
Ui(d, λ)a1 +

(
λi1

λi1 + λ

))
(C.97)

Plugging these bounds into Eq. (C.92), we finally have

E
[∥∥∥Σ

−1/2
i,λ (Σ̂d

i − Σd
i )Σ

−1/2
i,λ

∥∥∥k]1/k

= E
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Aj
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√
e log d
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(C.98)
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Bound on T3. We wish to bound
∥∥∥Σ
−1/2
i,λ (Σd

i − Σi)Σ
−1/2
i,λ

∥∥∥. Using the

definition of Σd
i from Eq. (C.10), we can get

Σ
−1/2
i,λ (Σd

i − Σi)Σ
−1/2
i,λ = −

∑
j>d

λij
λij + λ

(vij ⊗ vij) (C.99)

Thus, ∥∥∥Σ
−1/2
i,λ (Σd

i − Σi)Σ
−1/2
i,λ

∥∥∥ =
λid+1

λid+1 + λ
(C.100)

Overall Bound. Combining the bounds on the terms T1, T2 and T3,

we get the final bound in the lemma.
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Appendix D

Appendix C - Proofs for Chapter 4

D.1 Proof of Lemma 4.1

By Condition 1, we know that for any I ⊆ [n], |I| = n − s, we have

1 ∈ span{bi | i ∈ I}. In other words, there exists at least one x ∈ R(n−s) such

that:

xB(I, :) = 1 (D.1)

Therefore, by construction, we have: AB = 1(ns)×n
, and the scheme (A,B) is

robust to any s stragglers.

D.1.1 Proof of Theorem 4.1

Consider any scheme (A,B) robust to any s stragglers, with B ∈ Rn×k.

Now, construct a bipartite graph between n workers, {W1, . . . ,Wn}, and k

partitions, {P1, . . . , Pk}, where we add an edge (i, j) if worker i and partition

j is worker i has access to partition j. In other words, for any i ∈ [n], j ∈ [k]:

eij =

{
1 if B(i, j) 6= 0

0 otherwise
(D.2)

Now, it is easy to see that the degree of the ith worker Wi is ‖bi‖0.

Also, for any partition Pj, its degree must be at least (s+1). If its degree

is s or less, then consider the scenario where all its neighbors are stragglers. In
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this case, there is no non-straggler worker with access to Pj, which contradicts

robustness to any s stragglers.

Based on the above discussion, and using the fact that the sum of

degrees of the workers in the bipartite graph must be the same as the sum of

degrees of partitions, we get:

n∑
i=1

‖bi‖0 ≥ k(s+ 1) (D.3)

Since we assume all workers get access to the same number of partitions, this

gives:

‖bi‖0 ≥
k(s+ 1)

n
, for any i ∈ [n] (D.4)

D.2 Proof of Theorem 4.2

Consider groups of partitions {G1, . . . , Gn/(s+1)} as follows:

G1 = {P1, . . . , Ps+1}

G2 = {Ps+2, . . . , P2s+2}
... (D.5)

Gn/(s+1) = {Pn−s, . . . , Pn} (D.6)

Fix some set I ⊆ [n], |I| = n− s. Based on our construction, it is easy

to observe that for any group Gj, there exists some index in I, say iGj ∈ I,

such that the corresponding row in B, biGj has all 1s at partitions in Gj and

0s elsewhere. This is because there are (s + 1) rows of B that correspond in
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this way to Gj (one in each block Bblock), and so at least one would survive in

the set I of cardinality (n− s). Now, it is trivial to see that:

1 ∈ span{biGj | j = 1, . . . , n/(s+ 1)} (D.7)

Also, since

span{biGj | j = 1, . . . , n/(s+ 1)} ⊆ span{bi | i ∈ I}, (D.8)

we have 1 ∈ span{bi | i ∈ I}.

Finally, since the above holds for any set I, we get that B satisfies

Condition 1. The remainder of the theorem follows from Lemma 4.1.

D.3 Proof of Theorem 4.3

Consider the subspace given by the null space of the random matrix H

(constructed in Algorithm 4.2):

S = {x ∈ Rn |Hx = 0} (D.9)

Note that H has (n−1)s different random values (s for each column), since its

last column is simply the negative sum of its previous (n− 1) columns. Now,

we have the following Lemma listing some properties of H and S.

Lemma D.1. Consider H ∈ Rss×n as constructed in Algorithm 4.2, and the

subspace S as defined in Eq. D.9. Then, the following hold:

• Any s columns of H are linearly independent with probability 1
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• dim(S) = n− s with probability 1

• 1 ∈ S, where 1 is the all-ones vector

For i ∈ [n], let Si denote the set Si = {i mod n, (i+1) mod n, . . . , (i+

s) mod n}. Then, Si corresponds to the support of the ith row of B in our

construction, as also given by the support structure in Eq. (4.10).

Recall that we denote the ith row of B by bi. By our construction, we

have:

bi(i) = 1

bi(Si \ {i}) = −H−1
Si\{i}Hi (D.10)

Now, we have the following lemma;

Lemma D.2. Consider the ith row of B constructed using Algorithm 4.2 (also

shown in Eq. D.10). Then,

• bi ∈ S

• Every element of bi(Si \ {i}) is non-zero with probability 1

• For any subset I ⊆ [n], |I| = n − s, the set of vectors {bi | i ∈ I} is

linearly independent with probability 1

Now, using Lemma D.2, we can conclude that for any subset I ⊆

[n], |I| = n − s, dim (span{bi | i ∈ I}) = n − s and span{bi | i ∈ I} ⊆ S.
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Consequently, from Lemma D.1, since dim(S) = n− s and 1 ∈ S, this implies

that:

span{bi | i ∈ I} = S with probability 1 (D.11)

and, 1 ∈ span{bi | i ∈ I}. Taking union bound over every I shows that B

satisfies Condition 1. The remainder of the theorem follows from Lemma 4.1.

D.3.1 Proof of Lemma D.1

Consider any subset I ⊆ n, |I| = s such that n /∈ I. Then, all the

elements of HI are independent, and det(HI) is a polynomial in the elements of

HI . Consequently, since every element is drawn from a continuous probability

distribution (in particular, Gaussian), the set {HI | det(HI) = 0} is a zero

measure set. So, P (det(HI) 6= 0) = 1, and thus the columns of HI are linearly

independent with probability 1.

If n ∈ I, then we have:

det(HI) = det(H̃) (D.12)

where we let H̃ =
[
HI\{n},−

∑
i∈[n]\I Hi

]
. The elements of H̃ are independent,

so using the same argument as above, we again have P (det(HI) = det(H̃) 6=

0) = 1. Finally, taking a union bound over all sets I of cardinality s shows

that any s columns of H are linearly independent.

Since any s columns in H are linearly independent, this implies that

rank(H) = s. Since the subspace S is simply the null space of H, we have

dim(S) = n− s.
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Finally, since Hn = −
∑

i∈[n−1]Hi (by construction), we have H1 = 0

and thus 1 ∈ S.

D.3.2 Proof of Lemma D.2

By construction of bi, we have:

Hbi = Hi +HSi\{i}bi(Si \ {i}) = Hi −Hi = 0 (D.13)

Thus, bi ∈ S.

Now, if possible, let for some k ∈ Si\{i}, bi(k) = 0. Then, since bi ∈ S,

we have:

Hbi = Hi +HSi\{i,k}bi(Si \ {i, k}) = 0 (D.14)

Consequently, the set of columns {j | j ∈ Si \{i, k}}∪{i} is linearly dependent

which contradicts H having any s columns being linearly independent (in

Lemma D.1). Therefore, we must have every element of bi(Si \ {i}) being

non-zero.

Now, consider any subset I ⊆ [n], |I| = n − s. We shall show that

the matrix BI (corresponding to the rows of B with indices in I) has rank

n − s with probability 1. Consequently, the set of vectors {bi | i ∈ I} would

be linearly independent. To show this, we consider some n − s columns of

BI , say given by the set J ⊆ [n], |J | = n − s, and denote the sub-matrix of

columns by BI,J . Then, it suffices to show that det(BI,J) 6= 0. Now, by the

construction in Algorithm 4.2, we have: det(BI,J) = poly1(H)/poly2(H), for

some polynomials poly1(·) and poly2(·) in the entries of H. Therefore, if we can
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show that there exists at least oneH ′ withH ′1 = 0 and poly1(H ′)/poly2(H ′) 6=

0, then under a choice of i.i.d. standard Gaussian entries of H, we would have:

P (poly1(H)/poly2(H) 6= 0) = 1 (D.15)

The remainder of this proof is dedicated to showing that such an H ′

exists. To show this, we shall consider a matrix B̃ ∈ Rn−s×n such that

supp(B̃) = supp(BI) and det(B̃:,J) 6= 0, where B̃:,J corresponds to the sub-

matrix of B̃ with columns in the set J . Given such a B̃, we shall show that

there exists an s× n matrix H ′ (with H ′1 = 0) such that when we run Algo-

rithm 4.2 with this H ′, we get a matrix B′ s.t. B′I = B̃ i.e. the output matrix

from Algorithm 4.2 is identical to our random choice B̃ on the rows in the set I.

This suffices to show the existence of an H ′ such that poly1(H ′)/poly2(H ′) 6= 0,

since poly1(H ′)/poly2(H ′) = det(B′I,J) = det(B̃J) 6= 0.

Let us pick a random matrix B̃ as:

B̃ = Br
ID (D.16)

where Br
I is a matrix with the same support as BI and with each non-zero

entry i.i.d. standard Gaussian, and D is a diagonal matrix such that Dii =∑n−s
j=1 B

r
I (j, i), i ∈ [n]. Note that a consequence of the above choice of B̃ is

that the sum of all its rows is the all 1s vector. Now, it can be shown that

any (n − s) columns of B̃ form an invertible sub-matrix with probability 1.

Let Si be the support of the ith row of B. The rows of Br
I have the supports

Si, i ∈ I. Now because of the cyclic support structure in B, any collection
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{i1, i2, . . . , ik}(0 ≤ k ≤ n− s) satisfies the property:

|∪kj=1Sij | ≥ s+ k (D.17)

Using Lemma 4 in [17], this implies that there is a perfect matching between

the rows of Br
I and any of its (n−s) columns . Consequently, with probability

1, any (n− s) columns of Br
I form an invertible sub-matrix. Also, since every

column of Br
I contains at least one non-zero (again, owing to the support

structure of B), this implies that with probability 1, all the diagonal entries

of D are non-zero. Combining the above two observations, we can infer that

any (n− s) columns of B̃ form an invertible sub-matrix with probability 1.

So far, we have shown existence of a matrix B̃ with the following prop-

erties: (i) B̃ has the same support structure as BI , (ii) any (n − s) columns

of B̃ form invertible sub-matrix, (iii) the sum of all rows of B̃ is the all 1s

vector. Now, for any such B̃, we shall show that there exists an H ′ such that

H ′B̃T = 0 such that any s columns of H ′ form an invertible sub-matrix. This

implies that when we run Algorithm 4.2 with this H ′, the output matrix would

be the same as B̃ on the rows in the set I. The remainder of the proof then

follows from our earlier discussion.

Now, consider any set Q ⊆ [n], |Q| ≤ s. Suppose we pick any invertible

H ′:,Q, and set H ′:,[n]\Q = −H ′:,QB̃T
:,Q(B̃T

:,[n]\Q)−1. Then, such an H ′ satisfies

H ′B̃T = 0 and its columns in the set Q form an invertible sub-matrix. Now,

since invertibility on the set Q simply corresponds to det(H ′:,Q) 6= 0 (i.e. some

fixed polynomial being non-zero), if we actually picked a uniformly random
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H ′ on the subspace H ′B̃T = 0, then

P
(

det(H ′:,Q) 6= 0 |H ′B̃T = 0
)

= 1 (D.18)

Taking a union bound over all Qs, we get that

P
(

any s columns of H ′ form an invertible sub-matrix |H ′B̃T = 0
)

= 1

(D.19)

Thus, there exists an H ′ satisfying H ′B̃T = 0 with any s of its columns forming

an invertible sub-matrix. Also, since the sum of all rows of B̃ is 1, this implies

H ′1 = 0.
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